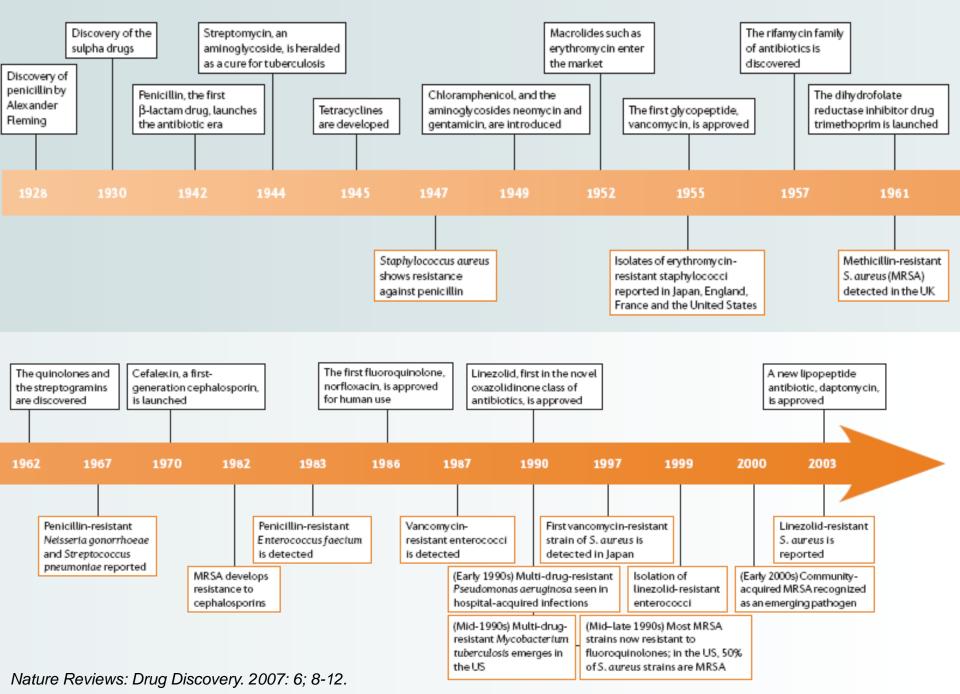
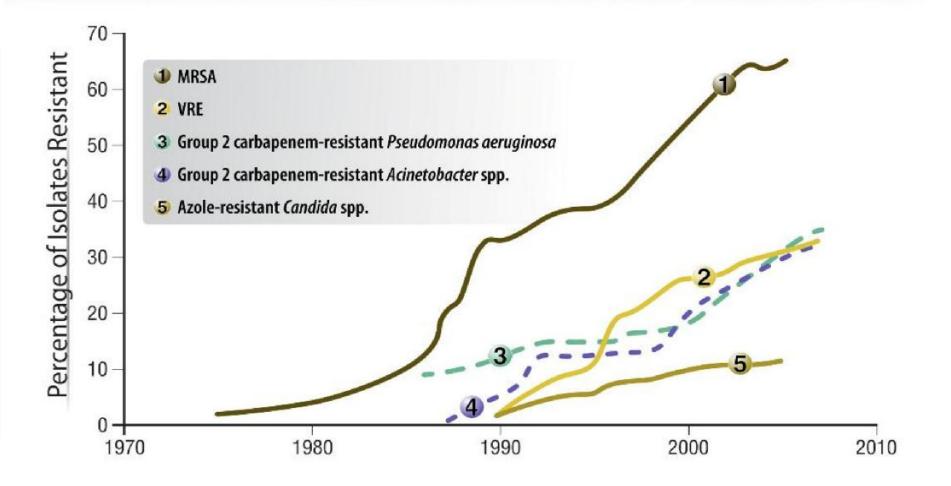
Antibiotics Awareness Day 2014 cum Infection Control Forum: MR Control in Private Hospital

Dr Raymond YUNG Consultant in Clinical Microbiology, Hong Kong Sanatorium and Hospital


17 November 2014

"It is not difficult to make microbes resistant to penicillin in the laboratory by exposing them to concentrations not sufficient to kill them, and the same thing has occasionally happened in the body...there is the danger that the ignorant man may easily under-dose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant."



-Alexander Fleming, Nobel prize lecture, 1945

Timeline | Race against time: the introduction of new antibiotic classes and the emergence of resistance

Trends in Antimicrobial Resistance

Adapted from Wenzel RP, et al. Infect Control Hosp Epidemiol. 2008;29:1012-1018.

Department of Health

Antimicrobial Agent	Prior Antibiotic Exposure (n = 310)	No Prior Antibiotic Exposure $(n = 444)$	р
Cefepime	71.0%	93.0%	<.001
Piperacillin-tazobactam	68.1%	88.5%	<.001
Imipenem/meropenem	80.0%	97.5%	<.001
Ciprofloxacin	60.3%	82.4%	<.001
Gentamicin	73.9%	92.1%	<.001
Multidrug-resistant ^b	37.4%	11.3%	<.001

Table 5. Multivariate analysis of independent risk factors for hospital mortality^a

Variable	Adjusted Odds Ratio	95% Confidence Interval	р
Prior antibiotic exposure	1.70	1.41-2.06	.005
Use of vasopressors	1.83	1.47 - 2.29	.006
Pseudomonas infection	1.75	1.39 - 2.21	.016
Inappropriate initial therapy	2.03	1.66 - 2.49	<.001
Acute Physiology and Chronic Health Evaluation II score (1-point increments)	1.13	1.11-1.15	<.001
Number of organ failures (one-organ increments)	1.93	1.73-2.14	<.001

- openanion of fromin

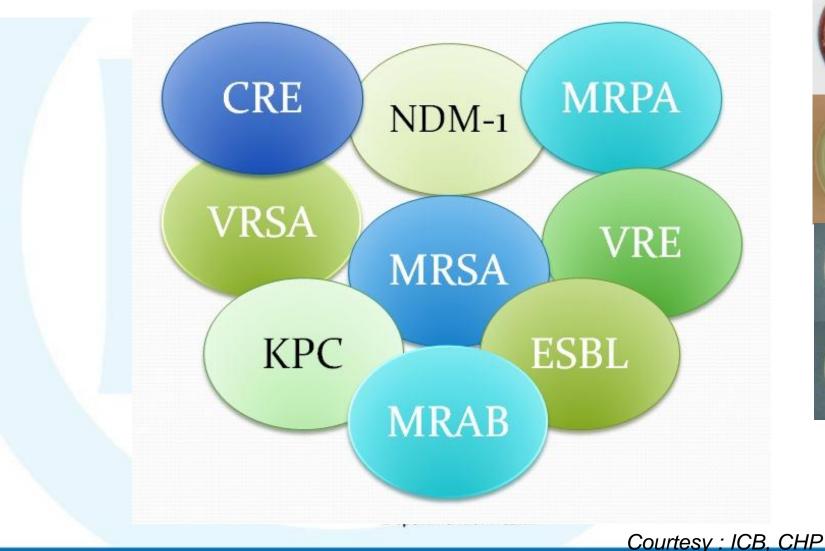
Antibiotics are INAPPROPRIATELY USED in a variety of ways

- Given when they are not indicated
- Continued longer than the clinical conditions required
- Given at the wrong dose i.e. not renal function and weight-based dosing
- Broad spectrum agents are used to treat very susceptible bacteria
- The antibiotic is not targeted to an infection

Optimize Duration of Antibiotic Therapy

- Avoid automatic 10-14-day course of therapy
- New evidence for duration of therapy
 - Uncomplicated urinary tract infection: 3-5 days¹
 - Community-acquired pneumonia: 3-7 days²
 - Ventilator-associated pneumonia: 8 days³
 - CR-BSI Coagulase-negative staphylococci: 5-7 days⁴
 - Acute Hem Osteomyelitis in children-21 days⁵
 - Meningococcal meningitis-7 days⁶
 - Uncomplicated secondary peritonitis with source control: 4-7 days⁷
 - Uncomplicated SSTI⁸ 5 days
 - 1. Clin Infect Dis 1999; 29:745-758
 - 2. Clin Infect Dis 2007; 44:S27-72
 - *3. JAMA* 2003; 290:2588-2598
 - 4. Clin Infect Dis 2009; 49:1-45
 - 5. Pediatr Infect Dis 2010; 29:1123-1128

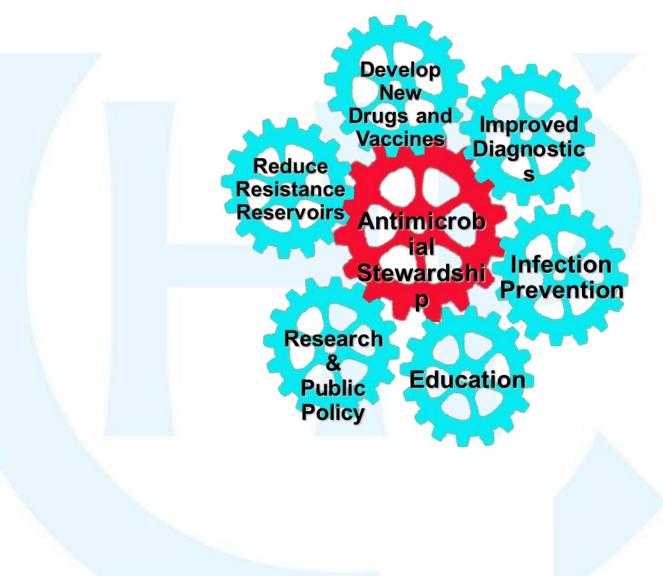
- 6. N Engl J Med 1997; 336:708-716
- 7. Clin Infect Dis 2010: 50:133-164
- 8. Arch Intern Med 2004; 164:1669-1674


Why We Need To Improve Antibiotic Use?

30-50% of antibiotic use in hospitals is unnecessary or inappropriate (CDC, 2014)

Inappropriate use of antibiotic leads to:

- the emergence of resistant bacteria
- colonization or infection with a multidrug-resistant organisms, e.g. MRSA, CRE, VRE, ESBL
- the development of *Clostridium difficile* associated infection
- an increase in the risk of patient harm from side effects
- unnecessary costs


Multidrug Resistant Organisms (MDROs)

The Perfect Storm Antimicrobial Resistance

Efforts to Control Resistance

Antibiotic Stewardship Program

- It is defined as the optimal selection, dosage, and duration of antimicrobial treatment that results in the best clinical outcome for the treatment or prevention of infection, with minimal toxicity to the patient and minimal impact on subsequent resistance
- It can assist physicians to make an appropriate decision regarding antibiotic use and change antibiotic prescribing behaviors to reduce unnecessary use

Prospective Audit and Feedback Back-end Approach

Physician writes order

Antibiotic
 Change/Continued based
 on Practice Guidelines

2.) Prescribingphysician contacted andrecommendation made

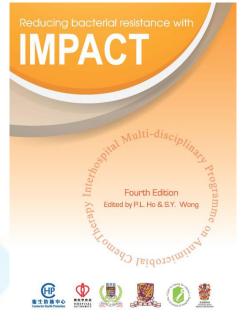
Antibiotic is Dispensed

At a later date, antibiotics are reviewed

(Targeted list of antibiotics, C/S mismatches, ICU patients, duration)

Formulary Restriction/Preauthorization Front-end Approach

Advantages


- Direct control over antimicrobial use
- Effective control of antimicrobial use during outbreaks
- Decreased
 inappropriate use
 of antimicrobials
 (and thus costs)

Disadvantages

- Personnel needs
- Antagonistic relationship (loss of autonomy)
- Therapy may be delayed
- De-escalation not addressed
- □ ID physicians often exempt
- Effectiveness in decreasing resistance is less clear

Goals of ASP

- Reduce antibiotic consumption and inappropriate use
- Reduce the emergence of multidrug-resistant organisms and *C. difficile*
- Improve infection cure rates
- Reduce adverse drug events
- Increase adherence of treatment guideline
- Save money

Rational Antibiotic Use in an ICU

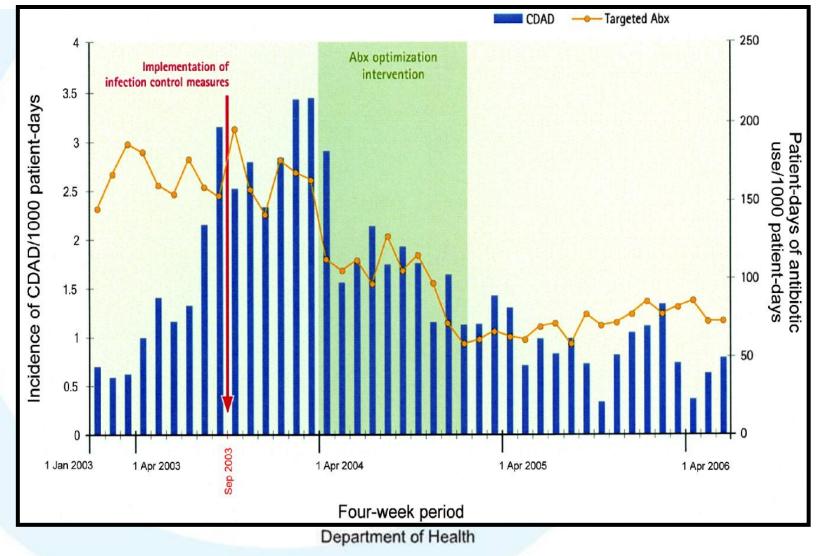
Rational use protocol

Antibiotic use controlled by 4 ICU physicians (members of ARC) Written algorithms for use Systematic reassessment at days 3, 7, 10 Twice-weekly meetings

Results

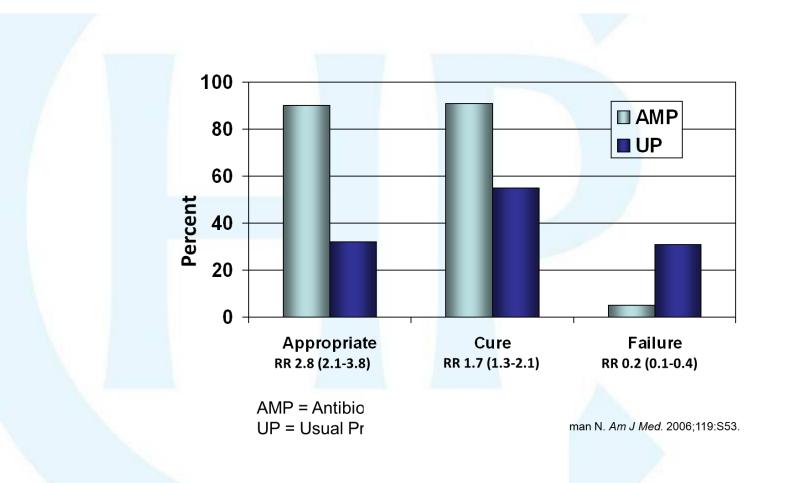
 \Box Antibiotic use \downarrow 36%

- □ Resistant nosocomial infections ↓ 52% (P<10⁻⁵)
- □ MRSA ↓ at yr 3; Enterobacteriaciae R at yr 4
- No change in *PsA* resistance or ESBL producers


Year	199 <mark>4</mark>	1995†	1996	1997	1998
Total NI* Patients	99	97	105	116	109
Total Days of Antibiotic Use	3,658	3,314	2,974	2,496	2,311
Total Antibiotic Costs (Euro)	64,500	52,20 0	50,10 0	40,95 0	42,00
% Antibiotic Resistance	44%	53%	39%	31%	21%

[†] Start of program
* NI = Nosocomial infection

Geissler A et al. Inten Care Med. 2003;29:49-54.


Targeted antibiotic consumption and nosocomial *C. difficile* disease

Tertiary care hospital; Quebec, 2003-2006

Valiquette, CID 2007:45 S112

Clinical Outcomes Better With Antimicrobial Management Program

ORIGINAL PAPER

CLINICAL PRACTICE

Outcome measurement of extensive implementation of antimicrobial stewardship in patients receiving intravenous antibiotics in a Japanese university hospital

T. Niwa,^{1,2} Y. Shinoda,³ A. Suzuki,¹ T. Ohmori,¹ M. Yasuda,² H. Ohta,² A. Fukao,² K. Kitaichi,¹ K. Matsuura,¹ T. Sugiyama,³ N. Murakami,² Y. Itoh¹

SUMMARY

ASP led to a decrease in the inappropriate use of antibiotics, saving in medical expenses, reduction in the development of antimicrobial resistance and shortening of hospital stay

Background: Antimicrobial stewardship has not always prevailed in a wide variety of medical institutions in Japan. Methods: The infection control team was involved in the review of individual use of antibiotics in all inpatients (6348 and 6507 patients/year during the first and second annual interventions, respectively) receiving intravenous antibiotics, according to the published guidelines, consultation with physicians before prescription of antimicrobial agents and organisation of education programme on infection control for all medical staff. The outcomes of extensive implementation of antimicrobial stewardship were evaluated from the standpoint of antimicrobial use density, treatment duration, duration of hospital stay, occurrence of antimicrobial-resistant bacteria and medical expenses. Results: Prolonged use of antibiotics over 2 weeks was significantly reduced after active implementation of antimicrobial stewardship (2.9% vs. 5.2%, p < 0.001). Significant reduction in the antimicrobial consumption was observed in the secondgeneration cephalosporins (p = 0.03), carbapenems (p = 0.003), aminoglycosides (p < 0.001), leading to a reduction in the cost of antibiotics by 11.7%. The appearance of methicillin-resistant Staphylococcus aureus and the proportion of Serratia marcescens to Gram-negative bacteria decreased significantly from 47.6% to 39.5% (p = 0.026) and from 3.7% to 2.0% (p = 0.026), respectively. Moreover, the mean hospital stay was shortened by 2.9 days after active implementation of antimicrobial stewardship. Conclusion: Extensive implementation of antimicrobial stewardship led to a decrease in the inappropriate use of antibiotics, saving in medical expenses, reduction in the development of antimicrobial resistance and shortening of hospital stay.

What's known

 Antimicrobial stewardship programmes are known to promote appropriate use of antibiotics. But, antimicrobial stewardship has not always prevailed in a wide variety of medical institutions in Japan.

What's new

- Antimicrobial stewardship intervention was found to be effective in reducing the inappropriate use of antibiotics, shortening hospital stay, reducing the MRSA ratio and saving medical expenses in Japanese hospital.
- Frequent monitoring resulted in an increase in the frequency of recommendation by ICT, reduction in artibiotic consumption and further shortening of artibiotic therapy and hospital stay. These findings supported an importance of day 3 bundle.

University Hospital, Gifu, Japan ³The Conter for Natrition Support & Infection Control, dia diaboratory Hospital, Gifu, Japan ³Laboratory of Pharmagy Practice and Social Science, Gifu Pharmaceutical University, Gifu, Japan

Department of Pharmacy, Gifu

Correspondence to:

Takashi Niwa, Department of Pharmacy, Gitu University Hospital, 1-1 Yanagido, Gifu 501-11194, Japan Tel.: +81 58 230 7088 Fax: +81 58 230 7087 Email: taniwa @gifu.u.a.cjp

Disclosures None.

Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://wileyoninelibrary. com/onlineopen#OnlineOpen_ Terms

Intro duction

Antimicrobial resistance is becoming one of major problems during use of antibiotics worldwide (1,2). It has been demonstrated that inappropriate use of antibiotics is the predominant factor that causes an enhancement of antimicrobial resistance (3,4). Therefore, it is important to prevent or minimise the occurrence of antimicrobial resistant bacteria. It has been reported that inappropriate use of antibiotics in the hospital ranges from 26% to 57% (5–8). The 12-Step Campaign to Prevent Antimicrobial Resistance Among Hospitalized Adult was established by the Centers for Disease Control and Prevention (CDC), in which withdrawal of inappropriate antibiotics is effective in preventing antimicrobial resistance. Anti-

microbial stewardship programmes are known to promote appropriate use of antibiotics (6,9). The Infectious Diseases Society of America (IDSA)/Society for Healthcare Epidemiology of America (SHEA) guidelines recommend two core proactive evidencebased strategies for promotion of antimicrobial stewardship, including 'formulary restriction and preauthorization' and 'prospective audit with intervention and feedback' (10,11). The goal of promoting appropriate use of antibiotics is to improve clinical outcomes by reducing the emergence of drug resistance and minimising drug-related adverse events. Furthermore, it has been shown that implementation of antimicrobial stewardship programmes leads to a reduction in the duration of hospital stay and saving in medical expenses (12),

J Antimicrob Chemother 2011; 66: 2168–2174 doi:10.1093/jac/dkr253 Advance Access publication 14 June 2011 Journal of Antimicrobial Chemotherapy

Impact of guidelines and enhanced antibiotic stewardship on reducing broad-spectrum antibiotic usage and its effect on incidence of *Clostridium difficile* infection

Moïra Joëlle Talpaert¹*, Guduru Gopal Rao², Ben Symons Cooper^{3,4} and Paul Wade⁵

¹Pharmacy Department, King's College Hospital, London, UK; ²Department of Microbiology, Northwick Park Hospital, London, UK; ³Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; ⁴Nuffield Department of Clinical Medicine, Centre for Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK; ⁵Pharmacy Department, Guy's and St Thomas' NHS Foundation Trust, London, UK

*Corresponding author. Tel: +44-203-299-9000, ext. 5728; Fax: +44-203-299-1726; E-mail: moira.talpaert@nhs.net

Received 15 April 2011; returned 3 May 2011; revised 24 May 2011; accepted 24 May 2011

Objectives: To evaluate the impact of an 'intervention' consisting of revised antibiotic guidelines for empirical treatment of common infections and enhanced stewardship on reducing broad-spectrum antibiotic usage and its effect on incidence of *Clostridium difficile* infection (CDI).

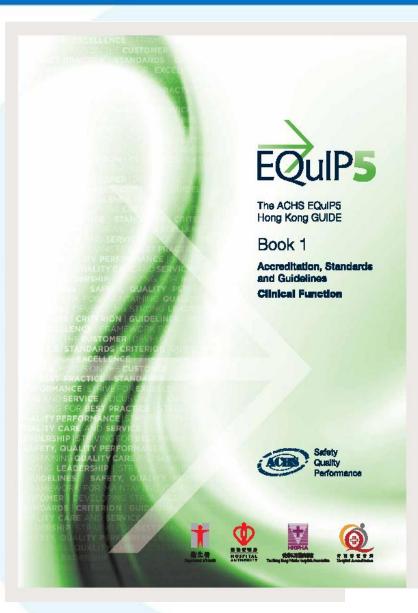
Methods: This was a retrospective, quasi-experimental study using interrupted time series (ITS) over 12 months before and after the intervention. The setting was adult medical and surgical wards in University Hospital Lewisham, an acute general hospital in London. The intervention was introduced in April 2006. Revised guidelines avoided broad-spectrum antibiotics, e.g. fluoroquinolones, cephalosporins, clindamycin, amoxicillin and co-amoxiclav, as they were considered to be 'high risk' for CDL Instead, 'low risk' antibiotics such as penicillin, clarithromycin, doxycycline, gentamicin, vancomycin, trimethoprim and nitrofurantoin were recommended. Changes in antibiotic usage and incidence of CDI before and after the intervention were compared using segmented regression analysis. The negative binomial model was used to analyse the time series to estimate the CDI incidence rate ratio (IRR) following the intervention.

Results: The intervention was associated with a significant reduction in the use of fluoroquinolones by 105.33 defined daily doses (DDDs)/1000 occupied bed-days (OBDs) per month [95% confidence interval (CI) 34.18–176.48, P<0.001] and cephalosporins by 45.93 DDDs/1000 OBDs/month (95% CI 24.11–67.74, P<0.0001). There was no significant change in total antibiotic, clindamydri, amoxicilli nor co-amoxiclar use. There was a significant decrease in CDI following the intervention [IRR 0.34 (0.20–0.58), P<0.0001].

Conclusions: Revised antibiotic guidelines and enhanced stewardship was associated with a significant stepwise reduction in the use of cephalosporins and fluoroquinolones and a significant decrease in the incidence of CDI.

Keywords: antibiotics, fluoroquinolones, cephalosporins, interrupted time series, CDI

Introduction


Clostridium difficile infection (CDI) is the most common healthcare-associated infection (HCAI) in England with a total number of 51829 cases reported in 2005–06.¹ This indidence rose by 7% in 2006–07, when 55620 cases were recorded.²

CDI is endemic in University Hospital Lewisham, an acute general haspital in South London. Between April 2005 and March 2006, 349 cases of CDI were recorded. At that time our

guidelines recommended levofloxacin for treatment of mild to moderate community-acquired pneumonia and norfloxacin for lower urinary tract infection. Cefuroxime was recommended for severe community-acquired pneumonia and pyelonephritis. Ceftazidime and co-amoxiclav were advised when treating hospital-acquired pneumonia and aspiration pneumonia, respectively. In light of the high incidence of CDI at University Hospital Lewisham and reports of association of CDI with widespread use of agents such as fluoroquinolones and

© The Author 2011. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

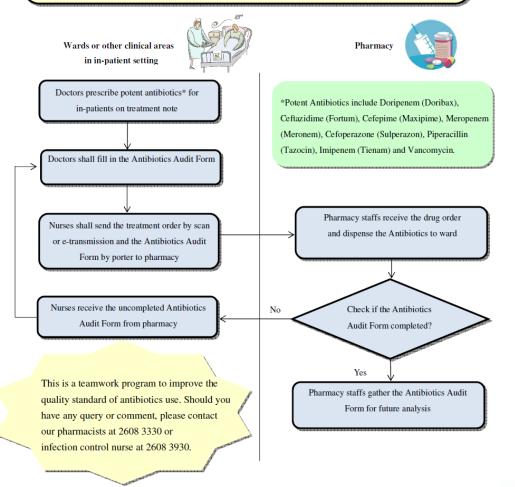
ASP was associated with a significant stepwise reduction in the use of cephalosporins and fluoroquinolones and a significant decrease in the incidence of *C. difficile* infection

Criterion 1.5.2 (Mandatory)

The infection control system supports safe practice and ensures a safe environment for consumers/patients and healthcare workers

 Guideline should be available on the use of antimicrobials

Antimicrobial-related Infection Control Programs in Private Hospitals

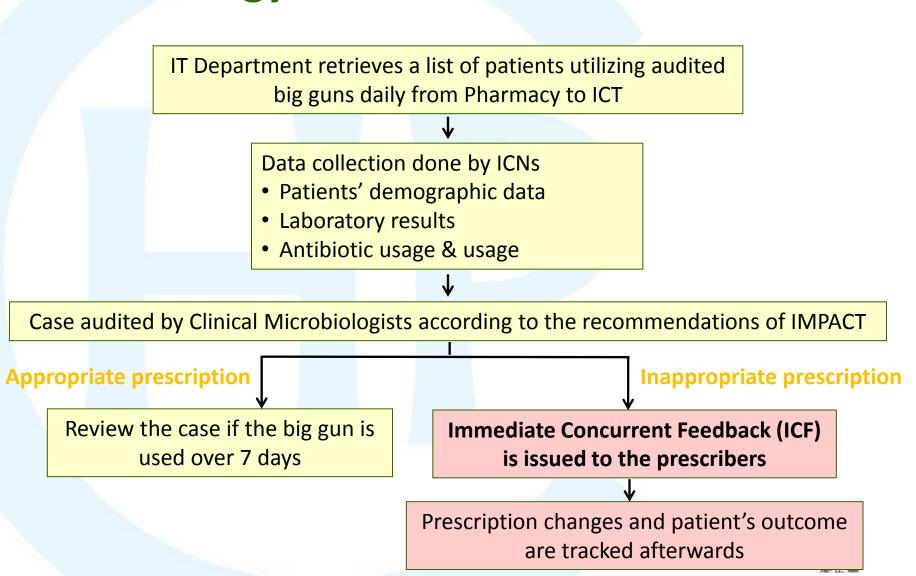

	Antibiotic S	tewardship	Antil	Antibiotic		DROs	Antibiotic U	sage	
Hospital		ram		xis Audit		eillance	Guideline in		Remarks
	YES	NO	YES	NO	YES	NO	YES	NO	
Canossa Hospital	\checkmark		~		✓		\checkmark		Reference to IMPACT 4
Evangel Hospital	\checkmark		~		✓		\checkmark		Reference to IMPACT 4
HK Adventist Hospital	✓		V		V		✓ Surgical Prophylaxis Guideline		Reference to Sanford Guide & IMPACT
HK Baptist Hospital	\checkmark		√		~		\checkmark		Reference to IMPACT 4
Matilda International Hospital	V		~		~		\checkmark		Reference to Sanford Guide & IMPACT
Precious Blood Hospital Caritas	~		2013 on UTI		~		\checkmark		Reference to IMPACT 4
Union Hospital	\checkmark			Planning	~		\checkmark		Reference to IMPACT 4
St. Paul's Hospital	\checkmark		\checkmark		~			~	IMPACT guideline (surgical prophylaxis) sent to all doctors via e-mail
St. Teresa's Hospital	\checkmark		√		~		\checkmark		Reference to IMPACT 4
Tsuen Wan Adventist Hospital	√			Planning	~		\checkmark		
HK Sanatorium & Hospital	~			Planning	~		✓ Surgical Prophylaxis Guideline		Reference to IMPACT 4

Antibiotic Stewardship Program

Use of Antibiotics Audit Form at In-Patient Setting

As now the antimicrobial drug resistance is an important public health threat because it endangers our ability to effectively treat infections, our hospital is putting effort to optimize antimicrobial usage by Antibiotic Stewardship Program. With effective since 1 December 2011, the Antibiotics Audit Form targeting the usage of potent antibiotics is fully implemented in all in-patients in Union Hospital. The logistic of the program is presented in the following flowchart:

Effective since 01-12-2011 PHA-0484(R)


Union Hospital

ANTIBIOTICS AUDIT FORM

	SURNAME			UNIT RECORD NO.
Clinical Information:	SURNAME.			UNIT RECORD NO.
	GIVEN NAME			CHENTESE NAME
	SEX	AGE W	ARD	ADMITTED DATE & TIME
	ATTENDING DO	CTOR		!
Diagnosis/ Indication:	Ward/Div	ision:		
	U Ward	<u> </u>	DU	LCD DAL
Treatment:				
First Antibiotics Treatment		Concurrent If any, pleas		s Treatment
Empirical Treatment				
Known pathogen treatment for infection				
Second Antibiotics Treatment				
Empirical Treatment				
Known pathogen treatment for infection				
Procedural coverage (e.g. prophylaxis)				
Prescription		I		
Fortum Maxipime (Ceftazidime) (Cefepime)	C (Me	Meronem ropenem)		Sulperazon (Cefoperazone)
Tazocin Tienam (Piperacillin + Tazobactam) Tienam (Imipenem + Cilastatin)		Vancomycin		Zinforo (Ceftaroline)
Investigation (done or to be done)	•			
Culture: Site Blood Culture before Antibiotics administration*				
Radiological investigations for sepsis (e.g. CXR, Ultrasound etc)				
Dec	tor's signati	ure :		
	Da	te :		

Antibiotic Stewardship Program (ASP) in HKSH (Jul 2010 to Jun 2014)

Methodology

"Big Guns" Included In ASP

- Cefepime (Maxipime)
- Ceftazidime (Fortum)
- Imipenem (Tienam)
- Meropenem (Meronem)
- Piperacillin-tazobactam (Tazocin)
- Cefoperazone-sulbactam (Sulperazon)
- Tigecycline (Tygacil)
- Linezolid (Zyvox)
- Vancomycin

Newly added in Jul 2014

- Daptomycin (Cubicin)
- Ceftaroline fosamil (Zinforo)
- Polymyxin E (Colistin)
- Teicoplanin (Targocid)

Methodology

Hong Kong Sanatorium & Hospital Infection Control Committee

Antibiotic Stewardship Program Audit Report on Big Guns Usage

I.	Patient	Demogra	phic
----	---------	---------	------

Date of survey:	Date of admission:	Affix patient label here	
A desiration Communi	□Home	□Nursing home	□HA hospital
Admission Source:	Private hospital	□Others	
Allergy History:			
Recent Admission (Date/]	Place/Diagnosis):		
Admission diagnosis & u	nderlying diseases:		
Operation(s):			
○ No ○Yes, Give o	letails:		

II. Clinical Laboratory Data and Antibiotic Treatment

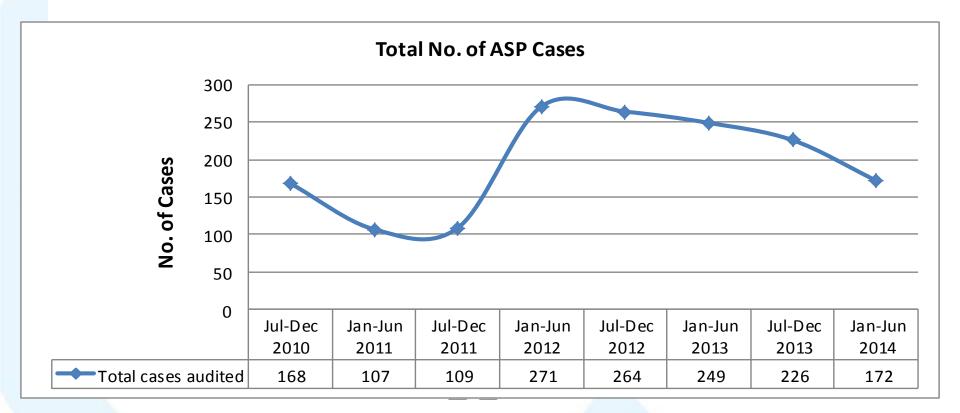
	DM HT	□ IHD	COAD D E	ESRF [Others			
Past Medical History:	Immunocompromised	OYes	(Transplant	□ On long	term steroid/immunosuppressant			
	O No		\Box HIV	Chemoth	nerapy 🗌 Others)			
Body Temp: °C	C Ventilator: O No	O Yes	Inotrope:		Septic Shock: O No O Yes			
WBC:	Neu:		Bil:		BP:			
ALT:	ALP:		Plt:		(indicate if SBP<100, DBP<60) SaO2:			
Ur:	Cr:		Cal CrCl:		(indicate if SaO2≤95)			
ESR:	CRP:		O2 Consumption:		CVP:			
Astrup pH:	pCO2:	pO2:	SO2:		(indicate if CVP≤5 or ≥15)			
Organ/System Involved:								
🗆 Lung 🗆 In	tra-abdominal	🗆 Urina	ry 🗆 IV	Catheter-re	elated 🗌 Bacteremia			
DPD-related So	oft tissue	\Box CNS	□ Otl	hers:				
Treatment:								
🗆 Prophylaxis: 🗆 Surgical	, Wound class: 🗆 C	lean 🗆	Clean contaminated	🗆 Contam	inated			
□ Non-sur	gical							
Empirical								
□ Known Pathogen: i) □	CAI 🗆 H	AI						
ii) In	ii) Infection diagnosis:							
Antibiotic Status:								
□ Not on Antibiotic Previous	sly							
□ Switch from:								
Concurrent Antibiotic:								

III. Big Guns Usage

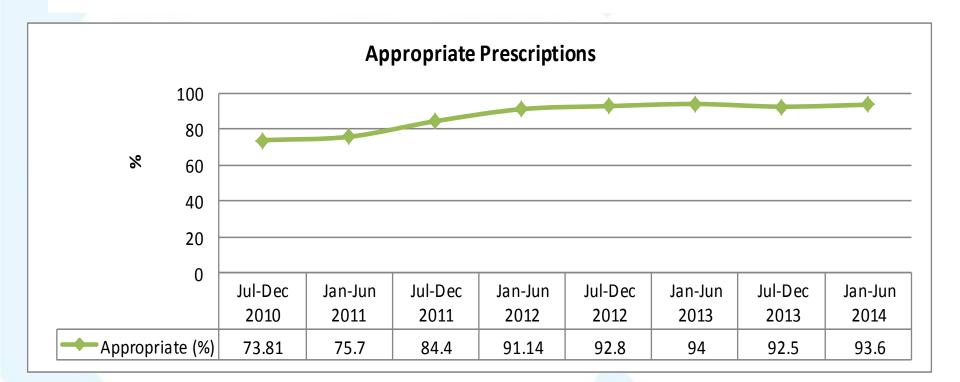
Antibiotic Name	Dose	Frequency	Start Date	Intended Duration	Prescription By

IV. Outcome Measures

	Not Done	Pending for Audit:		□ Undetermined	
	Appropriate Prescription	□ Inappropriate Prescription			
Imr	nediate Concurrent Feedback to Pr	escriber: O Yes	0	No	
	Recommendation followed (e.g.		Deteriorating patient condition		
	Change prescription but not follo	w specific recommendation		Not applicable - patient	
	Recommendations not followed,	i.e. no change of antibiotic, dose, etc		transfer/discharge/death/treatment	
	Not applicable - patient transfer/	discharge/death/treatment already stopped		already stopped	
	Modify concurrent antibiotics; re	commendation followed		Other:	
	Modify concurrent antibiotics; re	commendation not followed			
	Other				
Dat	a Collected By:	Audited By:			
Dat	e:	Date:	Date:		

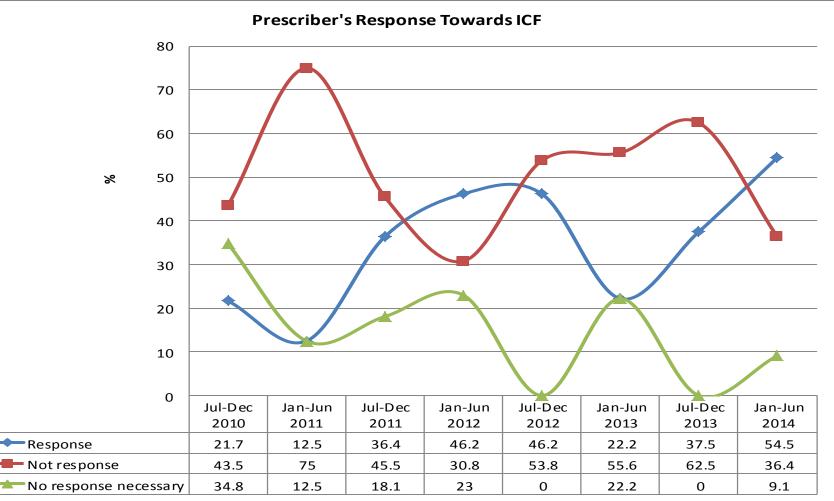

V. Miscellaneous

Accuracy of Information Provided:	O Correct	O Incorrect	□ Treatment	□ Organism isolated		
			Indication	Previous Antibiotic Treatment		
			□ Sensitivity	Others:		
Reason for Appropriate Prescription:	Accordin	g to ST	🗆 Imm	unocompromised		
	□ Nosocom	ial Infection	🗆 Emp	irical Treatment for Neutropenic Fever		
	CAPD P	eritonitis	□ Reco	ommended by Microbiologist/ID Physicians		
	Allergy H	listory	□ Seve	□ Severe Clinical Infection		
	□ Failure of	f 1 st Line Antib	iotics 🗆 Oral	□ Oral Intake/Absorption Unreliable/Impossible		
	□ Others					
Reason for Inappropriate	□ No evide	nce of infection	n/alternative Dx	□ Use as prophylactic agent		
Prescription:	Coloniza	tion/contamina	tion	Spectrum too broad		
	C Redundar	nt combination		Inappropriate coverage		
	□ Inapprop	riate route		Inappropriate dosage		
	□ Inapprop	riate choice		Others		


Part I to Part III complete by ICN

Part IV & Part V complete by Microbiology Specialist

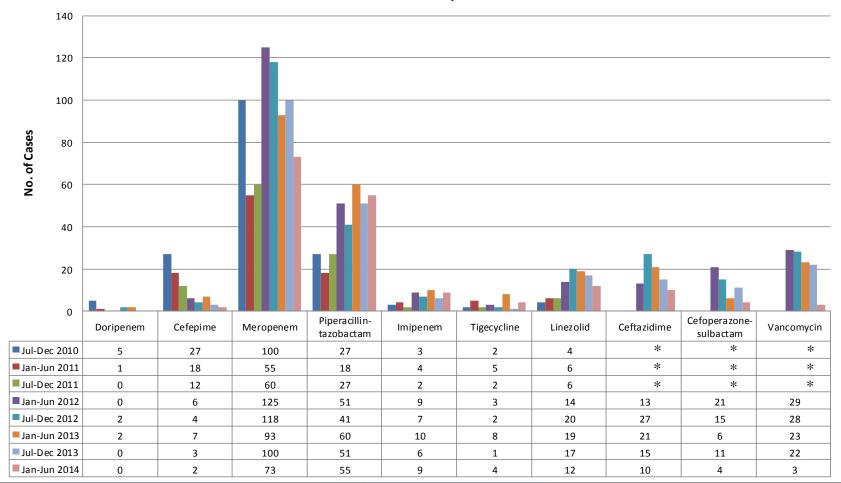
Total Number of ASP Cases


Appropriateness of Prescriptions

Immediate Concurrent Feedback (ICF) Issued to Prescribers

		Jul-Dec 2010	Jan-Jun 2011	Jul-Dec 2011	Jan-Jun 2012	Jul-Dec 2012	Jan-Jun 2013	Jul-Dec 2013	Jan-Jun 2014
/	Number of ICF were issued	23	16	11	13	13	9	8	11
	Number of cases followed ICF	5 (21.7%)	2 (12.5%)	4 (36.4%)	6 (46.2%)	6 (46.2%)	2 (22.2%)	3 (37.5%)	6 (54.5%)
	Number of case did not follow ICF	10 (43.5%)	12 (75%)	5 (45.5%)	4 (30.8%)	7 (53.8%)	5 (55.6%)	5 (62.5%)	4 (36.4%)
	Patient was discharged or death, or treatment had already stopped after ICF was issued	8 (34.8%)	2 (12.5%)	2 (18.1%)	3 (23%)	0	2 (22.2%)	0	1 (9.1%)

Cases Followed Immediate Concurrent Feedback



Reasons for Inappropriate Prescription

	Jul-Dec 2010	Jan- Jun 2011	Jul-Dec 2011	Jan-Jun 2012	Jul-Dec 2012	Jan-Jun 2013	Jul-Dec 2013	Jan-Jun 2014
No evidence of infection/alternative diagnosis	2	2	1	4	4	5	6	1
Inappropriate choice	-	-	-	2	-	1	1	2
Use as prophylactic agent	-	1	2	1	1	0	1	0
Spectrum too broad	19	19	14	11	14	7	8	7
Inappropriate coverage	1	5	-	6	1	2	1	2
Inappropriate dosage	-	-	-	1	-	0	0	1
Others	Community acquired infection	-	Renal impairment	No history of Pseudomonas aeruginosa colonization	-	-	-	-

Number of ASP Cases in Broad Spectrum Antibiotics

Number of ASP Cases in Broad Spectrum Antibiotics

17/11/2014

Antimicrobial Resistance Surveillance

The establishment of collaboration between CHP and Private Hospitals

Antimicrobial Resistant Organisms (ARO) Surveillance in Private Hospitals Discussed on WHO module ARO surveillance, AST panel, 1st positive isolates, with reference to DH, HA & CDC recommendations Lab service Questionnaire, data management, antimicrobial sensitivity testing, quality control...

Established since 2006

Working Group of Collaboration between CHP & Private Hospitals on Safe Use of Antibiotics & Infection Control

- Increase collaboration between CHP & Private Hospitals related to infection control
- Enhance communication & experience sharing among members
- Establish a central database related to antibiotics use & resistance, with regular update to members

Working Group 2014

Chairman Dr Dr WONG Tin Yau, Andrew & Co-Chairman Dr YUNG Wai Hung, Raymond

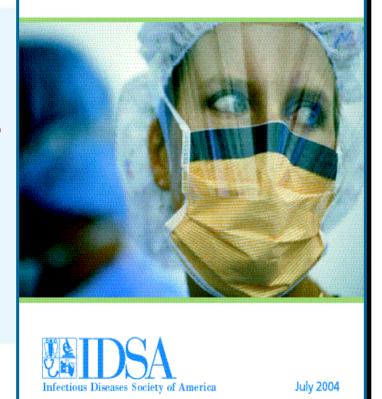
- Infection Control Branch, CHP
- Canossa Hospital (Caritas)
- Evangel Hospital
- Hong Kong Adventist Hospital
- Hong Kong Baptist Hospital
- Hong Kong Sanatorium & Hospital

Adventist 港 Health 安

- Matilda International Hospital
- Precious Blood Hospital
- St. Paul's Hospital
- St. Teresa's Hospital
- Union Hospital
- Tsuen Wan Adventist Hospital

What have we done?

- Conducted regular meetings
- Ad hoc subgroup, e.g. Hand Hygiene Campaign 2014 Working Group
- > Monitoring of the antibiotic sensitivities of the five selected bacteria
 - ICB collated antibiotic sensitivities data on the five selected bacteria from each private hospital, analyze and tabulate the data
 - The aggregated data was then be shared in the meetings and newsletters among healthcare professionals in private hospitals for internal references
- Surveillance of MDROs
- Experience sharing on infection control against VRE, MRSA etc.


Antibiotic Sen Private Hospit top 2 specime	tals	all s	pec	cime				æ	11840	9					Ho Kle	spita bsie	ls all lla sp	speci	mens			om Priv speci		(Para	11 8.9-0								Hos	pital	s all		ime				m Priv specir		5-	H	<u>8184</u>	13 16
Data of isolates from 11 hospit		- 0. 1		cus											Burt	No	of ESBI	AMC	1.00			Education		-										Data	ofisola	es from	11 hosp	itals									_
Partial No of Marca Marc		EN ER	~	CLD P		mtil	hinti	. 60	nciti		data	204	2 fron		Pers	a isola	tes +ve	AMC	LEY	241	AMP	Ertapenem	MEM		NI	NAL								Period	Neol	AMK	GEN	NEM	IMI	CEF	CTZ	CP U	ev su	L TA	2 TH	PP	INA
2012 Total 3576 641 2904/29	804 2365	5/3066 2050/	3088 91										s and		2012 1	361 (190	326 (17%		33 701/797 (88%)	537/809 (61%)	6/1183 (1%)	885/893 (99%)	1231/1237 (100%)				nsitivi specii							2012 Tot	14 272	232/260 (89%)	219/266 (82%)	145/169 (86%)	119/265 (83%)	172/208 7 (83%)	218/263 1 (83%)	(f1%) (f0	J169 141/7 2%) (55*	149 1850 NJ. (73/	254 58/82 %((71%)	1/24 (3%)	
2012 1008 35/6 (18%) (100%	9i) (77	7%) (67	%) ((70%) (1	^{6%} 2	sp	ecim	ens	- E.	col	i' -			1											erug				- unit	top a	ope			Тор	2 spe	cimen	s										
Top 2 specimens					De	ata of is	olates fr	om 11 ha	ospitals					_	Тор	2 spe	cimens			_							1 hospital							Speaker	nn No. of	-	059	NEM	-		CT7	CR 11	EV EII		7 11	210	INA
Specimen No. of Type Isolates MRSA VAN	N GI	EN ER	ম	CLD F	'EN	Period	No of isolates	ESBL	AMC	LEV	SXT	AMP	Ertapenem	MEM	Specie	ion No. Isola	of ESBI	AMC	LEV	SXT	ANP	Ertapenem	NEM	Period		АМК	GEN	AEN	MI (ег ст	z ce	LEV	SUL	Type To Spotur	163	131/142	125/147	54/97 (87%)	121/146	95/110	110/145 1	RU122 71 (74%) B	192 82/1	16 100/ NJ (72	138 24/04	1/15	
Sputum 927 187 690.69 (20%) (100%	396 658 %) (77	N851 516/ 7%) (61	(851 11 (96) (55/289 43 (54%) (1	132 3% 20	12 Total	6552	1544 40	069/5860 (69%)	1886/2738 (69%)	1273/2951 (43%)	1782/6082	3178/3180 3 (100%)	05/3907	155: Urin (10	70	6 150 (21%) (72%)	(84%)	167/305 (55%)	(0%)	369/362 (99%)	430/433 (99%)	2012 Total		1063/1132 (94%)	976/1124 5 (87%) (11664 96 96%)	84/1130 72 (87%) (8	/813 1062/ P%) (95/	1120 9791 %) 6 (87	11 590/73 %) (81%	n 517560 60 (88%)	0 Use		35/38 (92%)	32/09 (82%)	13/15 (87%)	33/35 (85%)		32/38 (84%)	24(21 15) (77%) (88		14 24/ 14 (62			
Wound 801 185 615/81	315 423	3576 429/	(600 2	51(315 23 (80%) (1	V16	op 2 :	specim	ens							Sputa	n 62	1 69 (13	(84%) 405/481	(93%)	162/221 (73%)	2/366 (1%)	203/205 (99%)	350/351 (100%)	Ton	2 speci	mone								AMK: CEF	amikaci	e GEI	k gentar				n LEV	imipener / levofloxa	acin				
*MRSA = S. aureus resistant % of MRSA = % of MRSA an		xacillin/ ox	acillin/	methicilli	n/ \$p	ecimen Type		E98L */6	AMC	LEV	SXT	AMP	Ertapenem	MEM	AME	ampic	illin M	Iavulanic i EM: merc	acid LE openem idixic acid	IMI: imi		SXT: co	o-trimoxaz	1	en No. of	AWK	GEN	NEN	MI C	EF CT	z cs	LEV	SUL.	TIM: 1	icarcilin	+ clavul	subactar anic acid actam (U	(Timent				n + tazoba	actam (Ta	azocin)		4	
VAN: vancomycin GEN: ger PEN: penicillin SXT: co-trim	entamici noxazole	in ERY: er	rythron	mycin CL		Urine	4639	1070 28 (23%)	171/4105 (70%)	1367/1936 (715i)	957/2216 (43%)	1310/4311 (30%)	2255/2250 2 (100%)	(100%)	1100	2074	(7376)	INAL. IIdii					7.007	Sputur	n 494	458/492 (83%)	424/490 Z (87%) (99/6)	27/490 29/ (87%) (1	/335 4604 (94)	438 4294 (88) (88)	86 237/25 (81%)	8 201/226 4 (89%)	91											D	ET.W	uth
						Pus spirate	391			120/173 (69%)		111/375 (30%)	119/119 (100%)	238/238 (100%)	272/272 (100%) 4/	(100%)								Une	156	149/154 (97%)	135/154 ((88%) (8/97 1 9/96)	43/153 115 (53%) (5	-	153 1391 6) (895	52 100/11 i) (90%)	1 8290 1 (97%)	10/148 38/ 88% (55	69 12/19 %) (79%												
					A	MP: a		MEM	: mero	penem	IMI: im		SXT: co-	trimoxa		(11) (12)											entamicin eftazidime sactam (Sul) : acid (Time	erazon)		LEV. le eracifin 4	ofiosacin		cin)		1												

Bad Bugs, No Drugs¹

- Declining research investments in antimicrobial development^{2,3}
- The Antimicrobial Availability Task Force of the IDSA identified problematic pathogens including gram-negative bacteria²
- Problematic pathogens can "escape" the activity of antibacterial drugs³
 - "ESKAPE"(ESCAPE) pathogens include
 - Escherichia coli
 - Staphylococcus aureus
 - Klebsiella pneumoniae(C.difficle)
 - Acinetobacter baumannii
 - Pseudomonas aeruginosa
 - Enterobacter spp

BAD BUCS, NO DRUCS

As Antibiotic Discovery Stagnates ... A Public Health Crisis Brews

1. Infectious Diseases Society of America. *Bad Bugs, No Drugs: As Antibiotic Discovery Stagnates, A Public Health Crisis Brews.* July, 2004. http://www.idsociety.org/WorkArea/showcontent.aspx?id=5554. Accessed January 15, 2009. 2. Talbot GH, et al. *Clin Infect Dis.* 2006;42:657-68. 3. Boucher HW, et al. *Clin Infect Dis.* 2009;48:1-12.

Antibiotic sensitivities of the five selected bacteria:

- Staphylococcus aureus
- > Escherichia coli
- > Klebsiella species
- > Pseudomonas aeruginosa
- > Acinetobacter species

Monitor the trend of change regarding:

- Overall sensitivity pattern from all specimens
- Sensitivity patterns of the top two specimens for each bacteria
- Important specimen type e.g. blood

Antibiotic Sensitivity data 2013 from Private Hospitals – *S. aureus*

Data of isolates from 10 hospitals

All specimens

Period	No. of Isolates	MRSA	VAN	GEN	ERY	CLD	PEN	Linezolid	SXT	Fusidic acid	Rifampicin
2013	4013	807	3204/3204	2711/3027	2295/3396	1159/1668	262/2383	2065/2066	3162/3248	1411/1446	672/699
Total		(20%)	(100%)	(90%)	(68%)	(69%)	(11%)	(100%)	(97%)	(98%)	(96%)

Blood & Top 2 specimens

Specimen Type	No. of Isolates	MRSA	VAN	GEN	ERY	CLD	PEN	Linezolid	SXT	Fusidic acid	Rifampicin
Blood	49	10 (20%)	39/39	29/32	31/40	18/24	1/28	29/29	36/36	19/19	9/10
Dioou	75	10 (2070)	(100%)	(91%)	(78%)	(75%)	(4%)	(100%)	(100%)	(100%)	(90%)
Soutum	1101	266	782/782	808/917	652/977	224/378	95/761	502/502	734/752	329/336	122/130
Sputum	1101	(24%)	(100%)	(88%)	(67%)	(59%)	(12%)	(100%)	(98%)	(98%)	(94%)
Wound	947	224	742/742	557/608	480/738	372/485	29/332	610/611	783/824	389/408	107/110
swab	947	(24%)	(100%)	(92%)	(65%)	(77%)	(9%)	(100%)	(95%)	(95%)	(97%)

*MRSA = *S. aureus* resistant to cloxacillin/ oxacillin/ methicillin/ cefoxitin % of MRSA = % of MRSA among all *S. aureus* isolates

VAN: vancomycin GEN: gentamicin ERY: erythromycin CLD: clindamycin PEN: penicillin SXT: co-trimoxazole

% of MRSA +ve in specimen cultured with *S. aureus*

	2012 (11 hospitals)	2013 (10 hospitals)	P value
Total no. of isolate	3576	4013	
Blood	15% (5/34)	20% (10/49)	0.5067
Sputum	20% (187/927)	24% (266/1101)	0.0317
Wound swab	23% (18 <mark>5/</mark> 801)	24% (224/947)	0.7838

PHLSB Data

Department of Healt	ealth Protection h the Hong Kong Special Administrative Region
GovHK香港政府一站通	繁體版 简体版 SEARCH Enter search keyword(s) 🔎 SITE MAP 🖂
Home About Us	General Public Health Professionals Institutions & Schools Business & Workplace Font Sizes RSS
Scientific Advisory Structure	Home > Statistics > Statistics on laboratory surveillance > Bacterial pathogen isolation and percentage of antimicrobial resistance, out-patient setting
Risk Communication Advisory Group	
Health Topics	Bacterial pathogen isolation and percentage of antimicrobial resistance - out-patient setting, in 2014
Statistics	
Recommendations	The presented figures refer to specimens received during the designated month.
Publications	

Infection Control	Nasal swab specimens													
Corner	Organism	Drugs*	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Media Room	Staphylococcus aureus	No.	3	1	3	2	4	3	4	0	3			
Training and Events		Penicillin	100%	100%	100%	100%	75%	0%	75%	-	67%			
e-Resources		Oxacillin [MRSA]	33%	0%	0%	0%	25%	0%	25%	-	0%			
Other Languages		Clindamycin	0%	100%	0%	50%	25%	0%	0%	-	33%			
Related Links		Erythromycin	0%	100%	0%	50%	25%	0%	0%	-	33%			
Contact Us		Gentamicin	33%	0%	0%	0%	0%	33%	0%	-	0%			

The Centre for Health Protection is a professional arm of the Department of Health for disease prevention and control

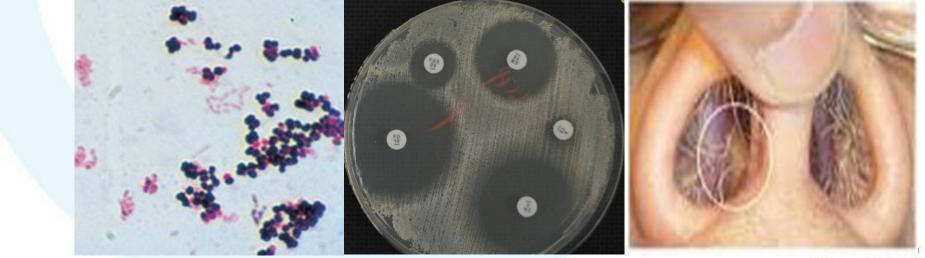
Throat swab specimens													
Organism	Drugs*	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Beta-haemolytic streptococcus of	No.	6	3	2	4	4	7	2	4	2			
Lancefield Group A, C & G	Penicillin	0%	0%	0%	0%	0%	0%	0%	0%	0%			
	Erythromycin	50%	33%	100%	25%	25%	29%	50%	50%	0%			

Sputum specimens													
Organism	Drugs*	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	De
Streptococcus pneumoniae	No.	5	13	6	7	20	8	9	9	9			
	Penicillin	40%	46%	33%	71%	35%	63%	22%	22%	11%			
	Erythromycin	80%	77%	83%	100%	75%	100%	78%	89%	89%			

http://www.chp.gov.hk/en/data/1/10/641/697/3346.html

Bacterial pathogen isolation and percentage of antimicrobial resistance out-patient setting, in 2014

The presented figures refer to specimens received during the designated month.


Nasal swab specimens													
Organism	Drugs*	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Staphylococcus aureus	No.	3	1	3	2	4	3	4	0	3			
	Penicillin	100%	100%	100%	100%	75%	0%	75%	-	67%			
	Oxacillin IMRSA1	33%	0%	0%	0%	25%	0%	25%	-	0%			
	Clindamycin	0%	100%	0%	50%	25%	0%	0%	-	33%			
	Erythromycin	0%	100%	0%	50%	25%	0%	0%	-	33%			
	Gentamicin	33%	0%	0%	0%	0%	33%	0%	-	0%			

Soft tissue specimens													
Organism	Drugs*	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Staphylococcus aureus	No.	79	60	83	90	69	72	73	75	68			
	Oxacillin IMRSA1	19%	15%	23%	17%	19%	17%	19%	20%	24%			

http://www.chp.gov.hk/en/data/1/10/641/697/3346.html

MRSA in HA hospitals

M	RSA	2009	2010	2011	2012	2013 (up to June)
MRSA	/ total SA	-	-	42.83% (10870/ 25382)	43.60% (11725/ 26891)	46.13% (10900/ 23629)
No of	fcases	6735	7227	7551	8315	7944
No of i	infection	3702	3794	4152	4664	3997
	Number	676	599	611	591	549
MRSA Bacteremia in Acute Beds/ 1,000	Overall	0.17%	0.15%	0.15%	0.14%	0.15%
Acute patient days	\geq 2 days of admission	0.07%	0.060%	0.06%	0.06%	0.06%

Courtesy : CICOHA

Antibiotic Sensitivity data 2013 from Private Hospitals – *E. coli*

Data of isolates from 10 hospitals

All Specimen

Period	No. of Isolates	ESBL	AMC	LEV	SXT	AMP	Ertapenem	MEM	IMI	NIT	NAL
2013 Total	7627	1909 (25%)	5103/6968 (73%)	3476/5025 (69%)	2573/4569 (56%)	2057/7096 (29%)	5120/5126 (100%)	5511/5517 (100%)	5033/5035 (100%)	2857/3124 (91%)	154/550 (28%)

Blood & top 2 specimens

Specimen Type	No. of Isolates	ESBL	AMC	LEV	SXT	AMP	Ertapenem	MEM	IMI	NIT	NAL
Blood	228	69	124/190	95/157	56/120	49/226	147/147	185/185	136/136		
DIUUU	220	(30%)	(65%)	(61%)	(47%)	(22%)	(100%)	(100%)	(100%)		
Urine	5452	1273	3691/4931	2457/3461	1969/3378	1517/5064	3573/3574	3838/3840	3456/3457	2843/3109	153/549
Unne	<u> 3432</u>	(23%)	(75%)	(71%)	(58%)	(30%)	(100%)	(100%)	(100%)	(91%)	(28%)
Pus	466	116	307/430	226/308	129/241	115/446	313/313	339/339	325/325	2/2	
aspirate	400	(25%)	(71%)	(73%)	(54%)	(26%)	(100%)	(100%)	(100%)	(100%)	

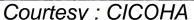
AMC: amoxicillin + clavulanic acidLEV: levofloxacinSXT: co-trimoxazoleAMP: ampicillinMEM: meropenemIMI: imipenemNIT: nitrofurantoinNAL: nalidixic acid

% of ESBL+ve in specimen cultured with *E. coli*

	2012 (11 hospitals)	2013 (10 hospitals)	P value
Total no. of isolate	6552	7627	
Blood	24% (46/191)	30% (69/228)	0.1580
Urine	23% (1070/4639)	23% (1273/5452)	0.7364

Bacterial pathogen isolation and percentage of antimicrobial resistance out-patient setting, in 2014

The presented figures refer to specimens received during the designated month:


Urine specimens													
Organism	Drugs*	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Escherichia coli	No.	391	376	494	464	401	473	546	528	544			
	Ampicillin	67%	60%	67%	70%	70%	68%	65%	69%	66%			
	Amoxicillin + clavulanic acid	5%	6%	6%	9%	6%	7%	6%	7%	7%			
	Nalidixic acid	70%	66%	74%	72%	67%	66%	70%	69%	67%			
	Nitrofurantoin	2%	2%	2%	1%	1%	2%	2%	3%	3%			
	Co-trimoxazole	36%	31%	40%	43%	41%	43%	43%	40%	40%			
	Levofloxacin	30%	38%	33%	31%	32%	29%	29%	33%	30%			
	ESBL+	17%	18%	18%	20%	19%	18%	19%	18%	22%			
Klebsiella pneumoniae^	No.	56	64	/1	80	79	48	97	104	108			
ebsiena prieumoniae	Amoxicillin + clavulanic acid	13%	11%	7%	6%	11%	6%	7%	6%	11%			
	Nalidixic acid	20%	20%	24%	13%	13%	23%	15%	13%	16%			
	Nitrofurantoin	23%	31%	37%	28%	30%	25%	34%	44%	28%			
	Co-trimoxazole	23%	19%	18%	15%	14%	19%	20%	14%	22%	-		
	Levofloxacin	14%	13%	15%	6%	9%	2%	5%	7%	6%			
	ESBL+	11%	6%	6%	10%	4%	15%	18%	10%	5%			
Proteus mirabilis^^	No.	54	54	62	55	54	49	69	61	73			
	Ampicillin	43%	33%	29%	42%	44%	27%	36%	38%	33%			
	Amoxicillin + clavulanic acid	4%	4%	3%	7%	9%	6%	1%	8%	3%			
	Nalidixic acid	35%	35%	31%	31%	41%	27%	33%	36%	32%			
	Co-trimoxazole	35%	24%	13%	25%	35%	20%	30%	34%	19%			[
	Levofloxacin	15%	13%	13%	24%	24%	16%	20%	21%	25%			ſ

http://www.chp.gov.hk/en/data/1/10/641/697/3346.html

ESBL in HA hospitals

ESE	BL.	2009	2010	2011	2012	2013 (up to June)
ESBL +ve / All E coli and I	K spp.	-	25%	25.37%	25.76%	23.77%
Total no of cases		-	-	13070	14224	12081
ESBL BSI	Number	-	-	1564	1722	1569
	Overall	-	-	0.22%	0.23%	0.25%
per 1,000 patient bed days	-	-	0.06%	0.06%	0.06%	

Antibiotic Sensitivity data 2013 from Private Hospitals – *Klebsiella* spp. Data of isolates from 10 hospitals

All specimens

Period	No. of Isolates	ESBL +ve	AMC	LEV	SXT	AMP	Ertapenem	MEM	IMI	NIT	NAL
2013 Total	2231	362 (16%)	1607/2058 (78%)	1281/1553 (82%)	904/1247 (72%)	13/1800 (1%)	1543/1551 (99%)	1692/1701 (99%)	1489/1494 (100%)	176/460 (38%)	53/106 (50%)

Blood and top 2 specimens

Specimen Type	No. of Isolates	ESBL +ve	AMC	LEV	SXT	AMP	Ertapenem	MEM	IMI	NIT	NAL
	62	5	40/51	37/45	27/33	0/49	44/44	54/54	44/44		
Blood	63	(8%)	(78%)	(82%)	(82%)	(0%)	(100%)	(100%)	(100%)		
Urine	814	172	547/732	456/564	329/481	3/614	551/554	607/608	532/532	176/459	52/105
Unne	014	(21%)	(75%)	(81%)	(68%)	(0%)	(99%)	(100%)	(100%)	(38%)	(50%)
Sputum	534	74	396/502	313/381	171/241	4/455	372/372	409/412	351/351		
Sputum	554	(14%)	(79%)	(82%)	(71%)	(1%)	(100%)	(99%)	(100%)		

AMC: amoxicillin + clavulanic acidLEV: levofloxacinSXT: co-trimoxazoleAMP: ampicillinMEM: meropenemIMI: imipenemNIT: nitrofurantoinNAL: nalidixic acid

% of ESBL+ve in specimen cultured with *Klebsiella spp.*

	2012 (11 hospitals)	2013 (10 hospitals)	P value
Total no. of isolate	1923	2231	
Blood	8% (4/52)	8% (5/63)	0.9613
Sputum	13% (69/521)	14% (74/534)	0.7709
Urine	21% (150/706)	21% (172/814)	0.9559

Bacterial pathogen isolation and percentage of antimicrobial resistance - out-patient setting, in 2014

The presented figures refer to specimens received during the designated month:

Urine specimens													
Organism	Drugs*	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Escherichia coli	No.	391	376	494	464	401	473	546	528	544			
	Ampicillin	67%	60%	67%	70%	70%	68%	65%	69%	66%			
	Amoxicillin + clavulanic acid	5%	6%	6%	9%	6%	7%	6%	7%	7%			
	Nalidixic acid	70%	66%	74%	72%	67%	66%	70%	69%	67%			
	Nitrofurantoin	2%	2%	2%	1%	1%	2%	2%	3%	3%			
	Co-trimoxazole	36%	31%	40%	43%	41%	43%	43%	40%	40%			
	Levofloxacin	30%	38%	33%	31%	32%	29%	29%	33%	30%			
	ESBL+	17%	18%	18%	20%	19%	18%	19%	18%	22%			
Klebsiella pneumoniae^	No.	56	64	71	80	79	48	97	104	108			
iensiena priedmoniae.	Amoxicillin + clavulanic acid	13%	11%	7%	6%	11%	6%	7%	6%	11%			
	Nalidixic acid	20%	20%	24%	13%	13%	23%	15%	13%	16%			
	Nitrofurantoin	23%	31%	37%	28%	30%	25%	34%	44%	28%			
	Co-trimoxazole	23%	19%	18%	15%	14%	19%	20%	14%	22%			
	Levofloxacin	14%	13%	15%	6%	9%	2%	5%	7%	6%			
	ESBL+	11%	6%	6%	10%	4%	15%	18%	10%	5%			
Proteus mirabilis^^	No.	54	54	62	55	54	49	69	61	73			
	Ampicillin	43%	33%	29%	42%	44%	27%	36%	38%	33%			
	Amoxicillin + clavulanic acid	4%	4%	3%	7%	9%	6%	1%	8%	3%			
	Nalidixic acid	35%	35%	31%	31%	41%	27%	33%	36%	32%			
	Co-trimoxazole	35%	24%	13%	25%	35%	20%	30%	34%	19%			
	Levofloxacin	15%	13%	13%	24%	24%	16%	20%	21%	25%			ſ

http://www.chp.gov.hk/en/data/1/10/641/697/3346.html

Antibiotic Sensitivity data 2013 from Private Hospitals – *P. aeruginosa* Data of isolates from 10 hospitals

All specimens

Period	No. of Isolates	AMK	GEN	MEM	IMI	CEF	CTZ	CIP	LEV	SUL	TAZ	TIM	PIP
2013 Tota	1462	1364/1455 (94%)	1277/1452 (88%)	829/985 (84%)	1136/1389 (82%)	940/1022 (92%)	1337/1448 (92%)	1187/1411 (84%)	797/1031 (77%)	676/808 (84%)	1192/1294 (92%)	266/564 (47%)	124/139 (89%)

Blood and top 2 specimens

Spec	imen	No. of isolates	AMK	GEN	MEM	IMI	CEF	CTZ	CIP	LEV	SUL	TAZ	ТІМ	PIP
Blo		19	19/19	18/19	15/16	16/18	14/14	18/19	18/19	14/15	12/12	17/17	1/4	2/2
DIO	JUU	19	(100%)	(95%)	(94%)	(89%)	(100%)	(95%)	(95%)	(93%)	(100%)	(100%)	(25%)	(100%)
Spu	tum	652	611/651	580/649	349/417	500/614	380/418	594/646	514/628	309/422	272/326	526/570	116/218	63/74
Spu	lum	052	(94%)	(89%)	(84%)	(81%)	(91%)	(92%)	(82%)	(73%)	(83%)	(92%)	(53%)	(85%)
Othor	roop	212	181/212	152/212	122/171	140/212	153/180	178/211	152/208	115/181	121/161	176/209	40/126	1/2
Other	lesp	212	(85%)	(72%)	(71%)	(66%)	(85%)	(84%)	(73%)	(64%)	(75%)	(84%)	(32%)	(50%)

AMK: amikacin GEN: gentamicin MEM: meropenem IMI: imipenem

CEF: cefepime CTZ: ceftazidime CIP: ciprofloxacin LEV: levofloxacin

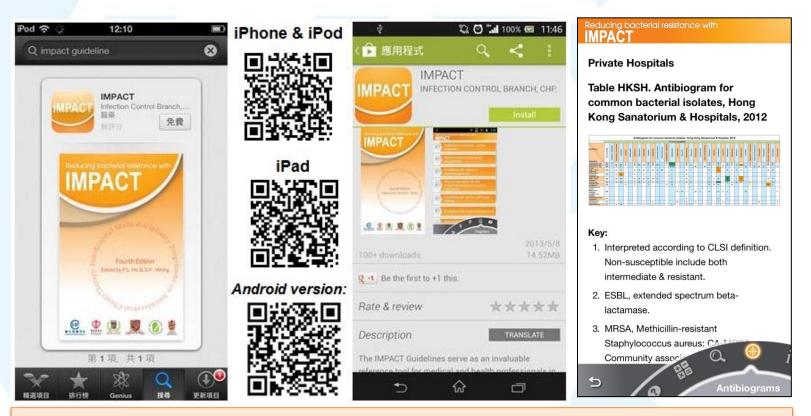
SUL: cefoperazone + sulbactam (Sulperazon) TAZ: piperacillin + tazobactam (Tazocin)

TIM: ticarcillin + clavulanic acid (Timentin) PIP: piperacillin

Antibiotic Sensitivity data 2013 from Private Hospitals – Acinetobacter spp. Data of isolates from 10 hospitals

All specimens

Period	No. of Isolates	AMK	GEN	MEM	IMI	CEF	CTZ	CIP	LEV	SUL	TAZ	ТІМ	PIP	UNA
2013	200	328/368	338/385	247/291	315/364	255/304	321/382	273/330	232/282	200/212	242/299	85/107	49/57	111/125
Total	389	(89%)	(88%)	(85%)	(87%)	(84%)	(84%)	(83%)	(82%)	(94%)	(81%)	(79%)	(86%)	(89%)


Top 2 specimens

Specimen	No. of isolates	AMK	GEN	MEM	IMI	CEF	CTZ	CIP	LEV	SUL	TAZ	ТІМ	PIP	UNA
Blood	6	6/6	5/6	2/3	4/6	3/3	3/6	5/6	3/3	2/2	2/5		1/1	1/1
DIUUU	U	(100%)	(83%)	(67%)	(67%)	(100%)	(50%)	(83%)	(100%)	(100%)	(40%)		(100%)	(100%)
Soutum	225	202/218	207/224	156/176	194/213	153/172	189/222	169/192	143/159	129/134	143/167	38/52	29/36	59/66
Sputum	220	(93%)	(92%)	(89%)	(91%)	(89%)	(85%)	(88%)	(90%)	(96%)	(86%)	(73%)	(81%)	(89%)
Wound	47	37/39	43/45	27/30	37/40	31/34	42/45	36/40	22/26	19/20	26/30	12/13	12/12	12/13
swab	47	(95%)	(96%)	(90%)	(93%)	(91%)	(93%)	(90%)	(85%)	(95%)	(87%)	(92%)	(100%)	(92%)

AMK: amikacinGEN: gentamicinMEM: meropenemIMI: imipenemCEF: cefepimeCTZ: ceftazidimeCIP: ciprofloxacinLEV: levofloxacinSUL: cefoperazone + sulbactam (Sulperazon)TAZ: piperacillin + tazobactam (Tazocin)TIM: ticarcillin + clavulanic acid (Timentin)PIP: piperacillinUNA: ampicillin + sulbactam (Unasyn)

Dissemination of data – way forward

Add tables of aggregated data to the IMPACT mobile apps
 Further publicize the 3-year data from 2011 to 2013 when available

The 4th edition of "Reducing bacterial resistance with IMPACT" guidelines (Search "IMPACT" in Apps Store)

Example from IMPACT apps

Reducing bacterial resistance with

	Antibiogram for common bacterial isolates, Hong Kong Sanatorium & Hospital, 2012																																					
														1	% non-	SUSC	eptibl	e																				
X	% non-susceptible																																					
Antibiotics Organism	No. of isolates	Ampicillin / Sulbactam	Amoxycillin / Clavulanate	Ampicillin	Amikacin	Azithromycin	Ceftazidime	Cephalothin	Cefotaxime	Cefepime	Ceftriaxone	Cefuroxime sodium	Cefuroxime axetil	Cefoperazone / Sulbactam	Ciprofloxacin	Clindamycin	Cloxacillin	Cotrimoxazole	Ertapenem	Erythromycin	Fusidic Acid	High Level Gentamicin	Gentamicin	Imipenem	Levofloxacin	Linezolid	Minocycline	Meropenem	Netilmicin	Nitrofurantoin	Penicillin	Piperacillin / Tazobactam	High level Streptomycin	Tetracycline	Teicoplanin	Ticarcillin / Clavulanic acid	Tobramycin	Vancomycin
Acinetobacter spp	59	7			7		9			10	74			8	7			10					14	9	10		3	12		-		14				27	9	
Enterobacter spp	terobacter spp 136 95 99 0 18 98 19 5 19 50 11 11 2 2 2 1 7 21 0 0 72 11 2 29 5																																					
Enterococcus spp	483		9	9						-					42.9 (7)					93		44		-	32	0				5	10	0	31	82	0			0
E. coli ESBL+ 26.5% (488/1838)	1838		24	83	3		28	70	28	27	28	34	50		41			48	0				32	0	52		28	0	15	10		2				36	29	
Haemophilus influenzae	150		0	76		1	0		0		1	5			2			51										1										
Klebsiella spp ESBL+ 20.2% (107/530)	530		25	100	2		26	40	26	21	26	33			27			34	1				12	1	26		26	1	5	57		7				28	17	
Proteus spp	160		18	52	4		6	32	6	5	6	17			31			44	0	-			18	1	17		78	0	13	96		0			-	2	15	
Pseudomonas aeruginosa	406				13		6			5				17	19								23	18	25			14				7				50	6	
Staphylococcus aureus MRSA 24.0% (158/658) CA-MRSA 7.6% (50/658)	658															36	24	1		40	4		19		24	0	5				99							0
Stenotrophomonas maltophilia	92																	4							24		1											
Streptococcus pneumoniae	73								3		0					64		48		73					3	0					0			64				0
Salmonella spp	92		8	32			1		1	1	3				8			13	0		1																	

Key:

1. Interpreted according to CLSI definition. Non-susceptible include both intermediate & resistant.

2. ESBL, extended spectrum beta-lactamase.

3. MRSA, Methicillin-resistant Staphylococcus aureus; CA-MRSA, Community associated Methicillin-resistant Staphylococcus aureus.

4. Unless otherwise stated, the resistance figure is based on analysis of more than 10 isolates. When the number of isolates is £10, the actual number is indicated in parenthesis.

indicate 10% or more increase in non-susceptibility rate compared to year 2011

indicate 10% or more reduction in non-susceptibility rate compared to year 2011

Resistance of common bacterial isolates, St Paul's Hospital, 2012																											
	% resistant																										
Organism	No. of isolates tested	Amikacin	Ampicillin	Amoxiciliin+clavulanate	Azithromycin	Cefuroxime	Ciprofloxacin	Ceftriaxone	Ceftazidime	Erythromucin	Clarithromycin	Clindamycin	Ertapenem	Cefoxitin	Cefepime	Nitrofurantoin	Gentamicin (HLAR)	Gentamicin	Linezolid	Penicillin	Levofloxacin	Meropenem	Imipenem	Netilmicin	Cotrimoxazole	Vancomycin	Piperacillin+tazobactem
Escherichia coli	659	1	64	35		26		25					0		25	2		29			28	0			42		
Enterococcus species	58		2				14										29		0							0	
Klebsiella pneumoniae	111	1	100	32		31		29					1		29	38		12			14	0			31		
Klebsiella species	52	0	100	23		17		6					0		6	20		10			11	0			21		
Proteus mirabilis	48	2	44	21		8		6					0		6	97		19			27	0			35		
Pseudomonas aeruginosa	88	2		1			9		3						6			5			11		10				3
Staphylcoccus aureus	221			34	45	34					46	40		35					0					1		0	
Streptococcus species	123				50			7		50		45								0	12					0	

According to Clinical and Laboratory Standards Institute, 2012

Resistance of common bacterial isolates, St Teresa's Hospital, 2012																								
										%	non	susce	eptibl	e										
Organism	No. of isolates tested	Amikacin	Ampicillin	Amoxicillin+clavulanate	Cefotaxime	Ceftazidime	Ceftriaxone	Cefuroxime (IV)	Cephalothin	Chloramphenicol	Ciprofloxacin	Clindamycin	Cotrimoxazole	Erythromycin	Gentamicin	Imipenem	Levofloxacin	Linezolid	Methicillin #	Penicillin	Piperacillin+tazobactam	Nitrofurantoin *	Tetracycline	Vancomycin
Acinetobacter species	52-53	8				32					43				25	32					34			
Escherichia coli	1012-1321		68	46				27	50		33		45		29							2		
Enterococcus species	94-117		30														25						87	<1
Haemophilus influenzae	303		57	0				0					79											
Klebsiella species	404-405		100	18				17	22				16		7									
Pseudomonas aeruginosa	247-249	4				6					9				10	8					3			
Salmonella species	219-253		46			3	2			17	7		20											
Staphylococcus aureus	975-996												2	33	11				15	85				0
MSSA	824-844												2	27	7				0	82				0
MRSA	151-152												4	64	30				100	100				0
Streptococcus agalactiae	273-327											47		51			16			0				0
Streptococcus pneumoniae §	65-68			26	27		23	46		7			56	81						61			79	0

Cefoxitin disc was used to determine methicillin susceptibility

* Only 395 urinary E. coli isolates were tested.

§ MIC distribution for the Streptococcus pneumoniae isolates (n=68) were as follows:

Penicillin oral (nonmeningitis breakpoints): sensitive $\leq 0.06 \text{ mg/L}$ (36.8%, 25/68), intermediate 0.12-1 mg/L (23.5%, 16/68), resistant $\geq 2 \text{ mg/L}$ (39.7%, 27/68) Cefotaxime (nonmeningitis breakpoints): sensitive $\leq 1 \text{ mg/L}$ (72.1%, 49/68), intermediate 2 mg/L (11.8%, 8/68), resistant $\geq 4 \text{ mg/L}$ (16.2%, 11/68).

Overall antibiotic sensitivities of the five selected bacteria

		AMK	AMC	AMP	CEF				CTZ			CIP	CLD		ERY		GEN	IMI	LEV		MEM	NAL	NIT	PEN	PIP	TAZ		TIM	SXT	UNA	VAN		
2013 (10 hospitals), % sensitive	No. of isolates identified	Amikacin	Amoxicillin +clavulanic acid	Ampicillin	Cefepime	Cefoperazone +sulbactam	Cefotaxime	Ceftazidime	Ceftazidime	Ceftriaxone	Cefuroxime	Ciprofloxacin	Clindamycin	Ertapenem	Erythromycin	Fusidic acid	Gentamicin	Imipenem	Levofloxacin	Linezolid	Meropenem	Nalidixic acid	Nitrofurantoin	Penicillin	Piperacillin	Piperacillin +tazobactam	Rifampicin	Ticarcillin +clavulanic acid	Trimethoprim +sulfamethoxazole	Unasyn	Vancomycin	MRSA	ESBL
Staphylococcus aureus	4013												69		68	98	90			100				11			96		97		100	20	
Escherichia coli	7627		73	29			74	74		73	69			100				100	69		100	28	91						56				25
<i>Klebsiella</i> species	2231		78	1			80	81		81	71			99				100	82		99	50	38						72				16
Pseudomonas aeruginosa	1462	94			92	84			92			84					88	82	77		84				89	92		47					
Acinetobacter species	389	89			84	94			84			83					88	87	82		85				86	81		79		89			

Working case definition of CRE, MRPA and MDRA for surveillance purpose

- CRE case definition: Enterobacteriaceae with carbapenemase gene PCR +ve
- MRPA case definition: *P. aureginosa* isolate which is concomitant resistant to the 12 indicator antibiotics from the 5 antibiotic classes (refer to the definition table on Slide 14 of the powerpoint)
- MDRA case definition: Acinetobacter isolate which is concomitant resistant to the 13 indicator antibiotics from the 5 antibiotic classes (refer to the definition table on Slide 15 of the powerpoint)
- For any suspected isolates, indicator antibiotics that have not been tested would be taken as resistant
- If the sensitivity pattern to an indicator antibiotic is reported as 'Intermediate', it shall NOT be counted as resistant

Feedback from Private Hospitals on MRPA MDRA & CRE data in 2013:

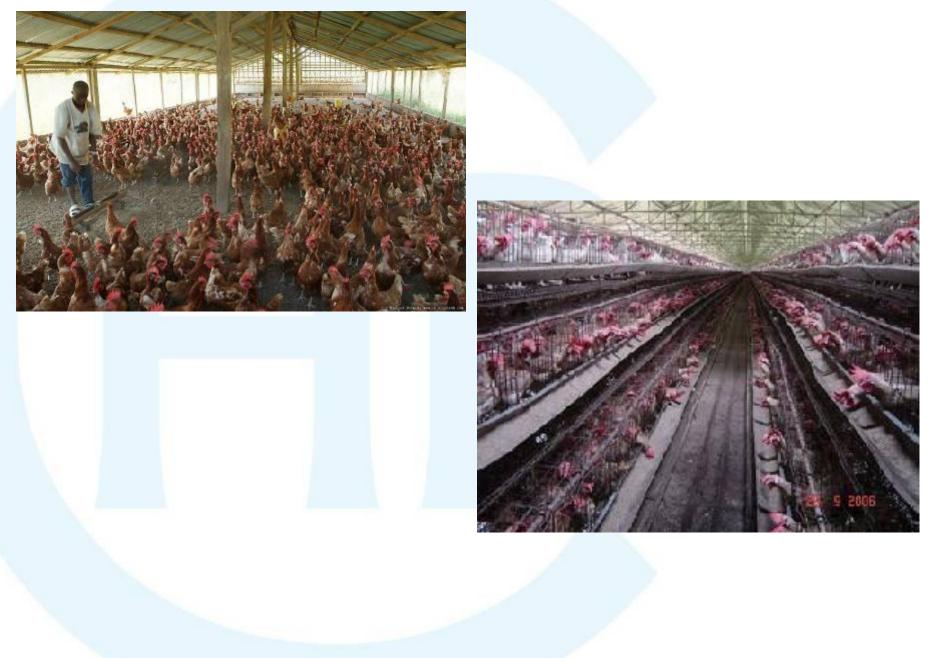
- Three hospitals reported no. of MRPA (total = 0) and no. of MDRA (total = 1)
- Two hospitals reported no CRE for *E coli* and *Kleb.* spp identified
- Two hospitals have remarks mentioning MRAB and MRPA in the dataset

Data from Private Hospitals - MDRO Superbugs

	No. of resistance	e isolates / Total no. of (% of resistance)	isolates tested
	2011	2012	2013
MRSA*	464 / 3457 (13.4%)	641 / 3576 (17.9%)	672 / 3292 (20.4%)
VRSA**	0 / 2753 (0.0%)	0 / 2904 (0.0%)	0 / 3072 (0.0%)
VRE	Not reported	Not reported	Not reported
CRE – E. coli^^	4 / 3492 (0.1%)	3 / 3680 (0.1%)	5 / 3409 (0.1%)
CRE – Klebsiella^^	7 / 1095 (0.6%)	9 / 1124 (0.8%)	9 / 931 (1.0%)
ESBL – <i>E. coli*</i>	1487 / 6251 (23.8%)	1644 / 6552 (25.1%)	1600 / 6509 (24.6%)
ESBL – Klebsiella*	285 / 1850 (15.4%)	326 / 1923 (17.0%)	286 / 1743 (16.4%)
MDRA^	1 / 258 (0.4%)	11 / 215 (5.1%)	19 / 147 (12.9%)
MRPA^	3 / 815 (0.4%)	2 / 922 (0.2%)	4 / 873 (0.5%)

* Data of bacteria isolates from 10, 11 and 9 hospitals for year 2011, 2012 and 2013 respectively.

** Data of **isolates tested** for <u>Vancomycin</u> from 9, 10 and 8 hospitals for year 2011, 2012 and 2013 respectively. ^ **Non-aggregated** data of <u>bacteria isolates</u> from 6, 7 and 5 hospitals for year 2011, 2012 and 2013 respectively. Resistance to the 12/13 antibiotics from 5 antibiotic classes.

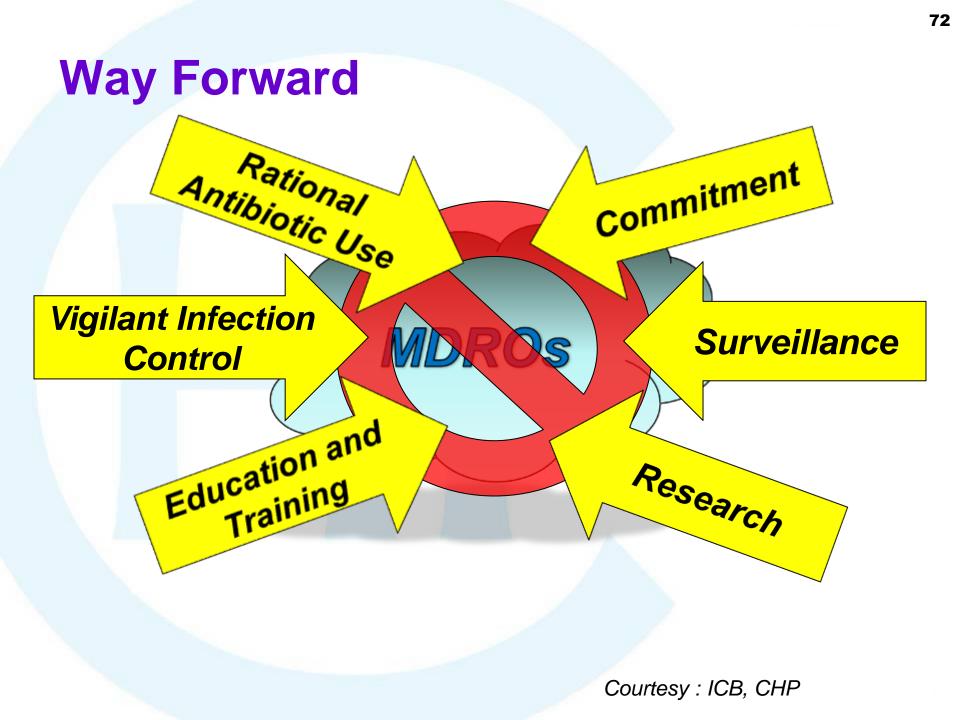

^ Non-aggregated data of isolates tested from 6, 7 and 5 hospitals for year 2011, 2012 and 2013 respectively Both in- and out-patient data of isolates were included.

Both clinical and screening specimens were included.

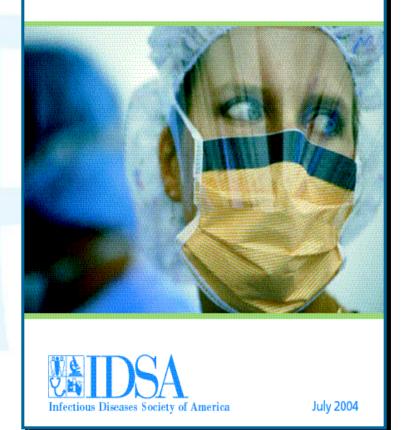
Our fight against antibiotic resistance is going to continue and your support is vital to keep the Antibiotic Stewardship and Surveillance Program viable and sustainable both in the Hospitals and Community.

Ecological Issues:

Animal Growth Promoters
 Environmental Control
 Proper Precautions
 Over the Counter Sale



Strategies for Medical Staff Ownership


Politics are Important!

Bad Bugs, No Drugs¹

- Declining research investments in antimicrobial development^{2,3}
- The Antimicrobial Availability Task Force of the IDSA identified problematic pathogens including gram-negative bacteria²
- Problematic pathogens can "escape" the activity of antibacterial drugs³
 - "ESKAPE"(ESCAPE) pathogens include
 - Escherichia coli
 - Staphylococcus aureus
 - Klebsiella pneumoniae(C.difficle)
 - Acinetobacter baumannii
 - Pseudomonas aeruginosa
 - Enterobacter spp

BAD BUGS, NO DRUGS

As Antibiotic Discovery Stagnates ... A Public Health Crisis Brews

1. Infectious Diseases Society of America. *Bad Bugs, No Drugs: As Antibiotic Discovery Stagnates, A Public Health Crisis Brews.* July, 2004. http://www.idsociety.org/WorkArea/showcontent.aspx?id=5554. Accessed January 15, 2009. 2. Talbot GH, et al. *Clin Infect Dis.* 2006;42:657-68. 3. Boucher HW, et al. *Clin Infect Dis.* 2009;48:1-12.

