Changing Epidemiology of MDROs

Susan Huang, MD MPH
Associate Professor, UC Irvine Health
Medical Director, Epidemiology & Infection Prevention
Division of Infectious Diseases & Health Policy Research Institute

Disclosures: None

Frequency of Hospital Pathogens

Relative frequency of bacterial species/groups encountered in clinical specimens from inpatients

http://www.microresistance.org/bacteriology.cfm

Gram Positives(MRSA)

MRSA as a Key Hospital Pathogen

- 2009-10 CDC Data, National Healthcare Safety Network
- S aureus
 - #1 HAI pathogen
 - #1 VAP, SSI
 - #2 CLABSI
- Majority MRSA

MRSA in ICUs

- US ICU Prevalence 8-20% ¹
- International ICU study: 1265 ICUs, 74 countries²
 - 1 day point prevalence study (EPIC II)
 - 51% infected, 26% bacteremic
 - 15% *S aureus* (majority MRSA (65%))

² Vincent et al. JAMA 2009;302(21):2323-9

MRSA as a Proportion of *S. aureus* Isolates

% MRSA Among *S. aureus*: US

CDC NNIS Data

% VRE Among Enterococci: US

CDC's Winnable Battles

Trends in healthcare-associated invasive methilicillin-resistant Staphylococcus aureus (MRSA) infections, 2007-2010

- 26% Reduction in hospital-associated MRSA invasive disease
- 30% Reduction in hospital-associated MRSA bacteremia

England & France: MRSA Trends

ICU vs Non-ICU HAI Infections

Major site of infection	Well-baby nursery	High-risk nursery	Intensive care unit (adults and children)	Outside of intensive care units (adults and children)	Unadjusted total	Adjusted total ^b	Percentage
Urinary tract	1,413	2,418	102,200	424,060	530,091	561,667	32
Bloodstream	5,652	14,797	81,942	133,368	235,759	248,678	14
Pneumonia	1,785	4,400	100,689	129,519	236,393	250,205	15
Surgical site	21	967	28,725	244,385	274,098	290,485	22
Other	10,188	10,687	80,732	263,810	365,417	386,090	17
Total	19,059	33,269	394.288	1.195.142	1,641,758	1,737,125	100

Pub Health Rep 2007; 122:160-6

Winning the Battle, Losing the War?

- Despite decrease in hospital-associated MRSA disease
- Increases in community and hospital prevalence
- Carriage associated with later invasive disease
- 86% of invasive disease is healthcare-associated
- *S. aureus* is still # 1 healthcare-associated infection pathogen

Kallen et al. JAMA 2010;304(6):641-8 Sievert et al. ICHE 2013;34(1):1-14

MRSA BSI: 22 European Countries

EARSS: European Antimicrobial Resistance Surveillance System; EARS-Net: European Antimicrobial Resistance Surveillance Network.

MRSA Carriage and Infection

- Carriage strongly associated with later invasive disease ¹
- 33% of patients in an academic center → invasive disease within 1 year of discharge
 - 26% Diabetes
 - 13% Immunosuppressed
 - 7% Renal Disease
- Increased risk surrounding hospitalizations, devices

Days from MRSA Detection Until Infection or Death

Huang et al. PLoS ONE 2011;6(9):e24340

Types of Infectious Sequelae

PRE-DISCHARGE

44% Lung Infections

19% Soft Tissue Infection

16% Disseminated/Unknown

7% Surgical Site Infection

5% Bloodstream/Vascular

1% Bone & Joint

1% Urinary Tract

26% Associated Bacteremia

POST-DISCHARGE

31% Lung Infections

31% Soft Tissue Infection

9% Disseminated/Unknown

5% Surgical Site Infection

8% Bloodstream/Vascular

9% Bone & Joint

5% Urinary Tract

26% Associated Bacteremia

No Good Immunity

- 3 medical centers
- Identified patients with serial MRSA cultures
 - Repeat Unrelated Bacteremia
 - Nares then Bacteremia
- Isolates genetically typed by PFGE
- Very high strain diversity

No Good Immunity

Serial Isolates: PFGE Patterns

	# Pts	Indistinguishable Strain Type		Same PFGE Type*	Different PFGE Type	
Sterile-Sterile	37		28 (72%)		34 (87%)	5 (13%)
Bacteremia-Bacteremia	34		26 (72%)		31 (86%)	5 (14%)
Nonsterile-Sterile	29		22 (73%)		30 (100%)	0 (0%)
Nares-Bacteremia	27		20 (71%)		28 (100%)	0 (0%)

^{*} Strains differ by <= 3 bands by PFGE

Vaccines in Clinical Trials

Candidate	Sponsor	Rationale	Status
StaphVAX	Nabi Biopharmaceuticals	CP5, CP8	Phase III Failed ¹
Veronate	Inhibitex	Cell Wall Adhesins	Phase III Failed
v710	Merck	Monovalent Iron Surface Determinant B	Phase III Failed ²
SA3Ag	Pfizer/Wyeth	Tri-valent CP5, CP8, rClfAm	Phase I Passed
Pentastaph	GSK (Nabi)	CP5, CP8, cell wall antigen 336, PVL and α toxin	Phase 1 Passed

¹Shinefield et al. NEJM 2002;346(7):491-6.

² Fowler et al. JAMA 2013;309(13):1368-78

MRSA Transmission

- Patients who are colonized shed as much as those infected ¹
 - Patient skin
 - Environmental burden
 - HCW hands after contact
- Need to address the carrier state

Strain-Dependent Effects

- Evidence for competitive transmission, but not yet certain for development of infection
- Community-type strains (PVL, MEC IV)
 - Concern for higher necrosis, transmission
 - No evidence of increased severity as HAI ¹
- MSSA protects against MRSA nasal acquisition ²
- VSE does not protect against VRE rectal acquisition ²

¹Lessa et al. CID 2012 Jul;55(2):232-41

² Huang et al. Crit Care 2011, 15(5):R210.

Emerging Gram Negatives

Resistance in Enterobacteriaeceae

Beta-lactamases 1950-60s

Cephalosporinases 1970s

• ESBLs 1980s

Carbapenemases 1990-2000s

- Carbapenems introduced mid-1980s
- Susceptibility limited to tigecycline, polymixins, occasional aminoglycoside
- Strains resistant to all available antibiotics reported

Carbapenemases

IMP (imipenemase) ~1990

VIM (verona integron) late 1990s

Outbreaks in Greece, Spain 2003+

• KPCs (ST 258) 2001 (N. Carolina)

Endemic NY, east coast early 2000s

US, Israel, Greece, Italy, Poland, France, China, L. America

• NDM-1 2008

– India → Europe, US

• OXA-48 2009

Grundmann H et al. Euro Surveill. 2010 Nov 18;15(46).

European CRE Experience

Country	Stage	Epidemiological scale	Documented introduction from abroad	Dominant class	
Greece		Fadanta	V.	KPC/VIM	
Israel ^a	5	Endemic	Yes	KPC	
Italy		Interresional enread	Yes	KPC	
Poland	7 4	Interregional spread	Yes	KPC	
France		Regional spread	FITE SECTION	KPC	
Germany	3		Yes	OXA-48/VIM	
Hungary	7			KPC	
Belgium		Independent hospital outbreaks		VIM	
Spain	2b		Yes	KPC/VIM/IMP	
England and Wales	1			NDM	
Cyprus		Single hospital outbreak		VIM	
Netherlands			Yes	KPC	
Norway	2a		Yes	KPC	
Scotland				KPC	
Sweden			Yes	KPC	
Bosnia Herzegovina			Yes	KPC	
Denmark	7			KPC/VIM	
Finland	7		Yes	KPC	
Croatia	7			VIM	
Czech Republic	1		Yes	VIM/KPC	
Ireland	1 .	Curadta	3	KPC	
Lithuania	1	Sporadic occurrence		?	
Latvia				?	
Malta]			?	
Portugal	7			KPC	
Romania	1			?	
Switzerland	7			KPC	

Grundmann H et al. Euro Surveill. 2010 Nov 18;15(46).

Belgium: Emergence of CRE

CNSE: carbapenem-non-susceptible Enterobacteriaceae; CPE: carbapenemase-producing Enterobacteriaceae;

Q1: first quarter.

Belgium: CRE Resistance Mechanisms

KPC: Klebsiella pneumoniae carbapenemase; NDM: New Delhi metallo-beta-lactamase; OXA: oxacillinase; Q1: first quarter; VIM: Verona integron-encoded metallo-beta-lactamase.

US Trends in CRE

Braykov ICHE 2013;34(3):259-268

US Trends in CRE

Outpatient < non-ICU (2x) < ICU (3x) < Long term care (4x)

Predictors of MDR Enterobacteriaceae

- ESBL ¹
 - Recent hospitalization, transfer from acute care facility
 - Multiple comorbidities, urinary catheter
- CRE ²
 - 7-fold risk if from LTAC and SNF with ventilator beds
 - Antibiotics, urinary catheter
 - History of CRE, other MDROs
 - Most usually on contact precautions already
 - ¹ Johnson et al. ICHE 2013;34(4):385–92
 - ² Prabaker et al. ICHE 2012;33(12):1193-99

Israel: National Response to CRE

- 2006: Multiple hospital outbreaks of KPC
- 2007: National spread → task force for action
- National mandate
 - Daily report of CRE carriers, status, disposition
 - Daily report of contact precaution adherence for each CRE patient
 - Dedicated nursing for CRE patients
 - Task force for Antibiotic Resistance and Infection Control
 - Site visits for enforcement

Israel: CRE Incidence

Schwaber et al. CID 2011;52(7):848-855

Reduction in CRE by Compliance with Contact Precautions

Schwaber et al. CID 2011;52(7):848-855

US CDC Recommendations for CRE

- Laboratory alert
- Contact precautions, including on readmissions
 - Single room, gown/gloves, dedicated equipment
- Dedicated nursing
- Low threshold for rectal screening of same-ward patients
- Consider chlorhexidine bathing
- Report importation from India (possible NDM-1)
- Notification to transferring facilities

ICU Knowledge of GNR MDROs

TABLE 3. Healthcare Professionals' Knowledge of the Activity of Antimicrobial Agents

	Participants with correct response, %				
Question (correct answer)	ID HCP $(n = 43)$	ICU HCP $(n = 120)$	Adult ICU $(n = 55)$	Pediatric ICU $(n = 65)$	
Carbapenem agents are ineffective for GNB expressing extended-spectrum β -lactamases (false)	98ª	64	64	65	
Tigecycline is an option for hospital-associated pneumonia	200424 00044	15-50			
caused by MDR <i>Pseudomonas aeruginosa</i> (false) Carbapenem-resistant <i>Klebsiella</i> species are usually susceptible	83ª	25	36 ^b	15	
to quinolone agents (false)	86ª	37	58 ^b	19	
Quinolone agents exhibit concentration-dependent killing (true)	60ª	28	33	25	
Correct answers per respondent, mean	3.3	1.5	1.9	1.2	

US (CDC) Materials

Questions?

