Colistin Use in MDROs

Dr. Kwong Tsz Shan Division of Infectious Diseases Department of Medicne Queen Elizabeth Hospital

13th October 2010

Cases Discussion

Case One

- **M**/44
- Good past health
- Presented with neutrophilia + thrombocytopenia + multiple shotty LNs + renal impairment
- Confirmed to be castleman disease
- Progressive deterioration respiratory failure
- intubated and transferred to ICU
- Developed sepsis
- Blood culture grew MDRAB

Blood Culture grew	
organism 1: Acinetobacter baumannii (heavy growth)	
Amikacin	R
gentamicin	R
Levofloxacin	R
Ciprofloxacin	R
Unasyn	R
Cefoperazone-sulbactam	R
Ceftazidime	R
Piperacillin/tazobactam	R
Cefepime	R
Meropenem	R
Tienam	R
Colistin	S
Tigecycline	S

Question

a. Tigecycline
b. Colistin
c. High dose Meropenem
d. Colistin + Meropenem

Case Two

- **M**/81
- Left groin high grade pleomorphic sarcoma
- Elective wide excision
- Post-operative care at ICU
- Fever + CXR LUZ consolidation
- Started cefepime
- TA = multi-drug resistant Acinetobacter baumannii

Sensitive to tigecycline (MIC 1 ug/ml; Etest)

- Tigecycline started
- CXR no improvement
- 2nd TA (collected after 4 days of tigecycline)
 MDRAB intermediate to tigecycline (4 ug/ml; Etest)
 Pseudomona aeruginosa (sensitive to all tested antibiotics)

Question

a. Step up the dose of Tigecycline
b. Colistin
c. High dose Meropenem
d. Colistin + Meropenem

Antimicrobial Therapy

For Multiple Drug Resistant Gram Negative Bacillus Examples: MDRA, CRA, MDRPA, NDM strains

Antimicrobial Options

- Colistin
- Tigecycline
- Combination therapy

Tigecycline

Glycylcyclines-a new class

Glycylcyclines-a new class

Glycylcyclines (a new class of modified tetracycline)

- Inhibits the 30S ribosomal subunit with higher affinity than tetracycline
- Ability to evade the major determinants of tetracycline resistance i.e., the tet(A) to tet(E) and tet(K) efflux pumps and the tet(M) and tet(O) determinants that provide ribosomal protection

Good for both GN and GP organisms

- Broad spectrum activity against both gram positive and negative bacteria EXCEPT PSEUDOMONAS SPP.
- Established clinical use in staphylococci, beta-hemolytic streptococci, enterococci, E.coli
- Good tissue distribution in bile, gallbladder, colon, lung
- FDA approved for
 - complicated skin and skin structure infection
 - complicated intra-abdominal infection

Can we use Tigecycline in MDRAB infections?

Controversies in Tigecycline Breakpoints!

Breakpoints!!

- Unusually high MIC when using Etest as compared with broth microdilution (BMD)
- Thamlikitkul et al (Thailand)
 - 148 MDRA isolates tested for MIC90
 - 1 mg/L by broth microdilution
 - 4 mg/L by Etest

Lack of universally accepted MIC interpretative breakpoints

 BSAC adopted the *enterobacteriaceae* MIC breakpoints for application to *acinetobacter* spp. (disc diffusion)

S: $\leq 1 \text{ mg/L}$ I: 2 mg/LR: > 2 mg/L

Table 2

In vitro activity of tigecycline and comparators against Gram-negative organisms collected from the Asia-Pacific Rim between 2004 and 2007.

Organism/antimicrobial agent	MIC (mg/L)	MIC (mg/L)		%1	%R
	MIC ₉₀	Range			
Acinetobacter spp. (n= 447)					
Amikacin	≥128	≤0.5 to ≥128	67.1	3.1	29.8
Cefepime	≥64	≤0.5 to ≥64	54.2	6.0	39.8
Ceftazidime	≥64	<u>≤</u> 8 to <u>≥</u> 64	50.4	4.9	44.7
Ceftriaxone	≥128	≤0.06 to ≥128	33.3	22.1	44.6
Imipenem ^a	≥32	0.12 to ≥32	66.2	4.4	29.4
Levofloxacin	≥16	≤0.008 to ≥16	60.4	15.0	24.6
Minocycline	4	≤0.5 to ≥32	90.8	6.7	2.5
Piperacillin/tazobactam	≥256	≤0.06 to ≥256	55.3	9.6	35.1
 Tigecycline 	1	0.03-8	-	-	-

riperaction raziobaciam. Tigecycline

Table 3

In vitro activity of tigecycline and comparators against resistant Gram-positive and Gram-negative organisms collected from the Asia-Pacific Rim between 2004 and 2007.

0.03-8

Organism/antimicrobial agent	MIC (mg/L)		%S	%1	%R
	MIC ₉₀	Range			
MDR Acinetobacter spp. (n = 153)					
Amikacin	≥128	1 to ≥128	22.9	4.6	72.5
Cefepime	≥64	4 to ≥64	3.3	6.5	90.2
Ceftazidime	≥64	<u>≤</u> 8 to <u>≥</u> 64	0.7	1.3	98.0
Ceftriaxone	≥128	8 to ≥128	0.7	2.0	97.3
Imipenem ^a	≥32	0.25 to ≥32	20.2	9.2	70.6
Levofloxacin	≥16	0.25 to ≥16	15.0	27.5	57.5
Minocycline	8	≤0.5 to ≥32	75.8	17.0	7.2
Piperacillin/tazobactam	≥256	0.12 to ≥256	4.6	3.9	91.5
Tigecycline	2	0.12-8	-	-	-
8-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5	8787878787878787878787	8888888888888888	*****		and the second
Tigecydine	893939393333333	0.12-8	84868888888	00000000000	Carlo Carlo Carlos
Piperadillin taxobactani	84464767=5264784848	0.12 to 2256	5555555 - 655555	1233233933355	1216151516121

Table 2

In vitro activity of tigecycline and comparators against Gram-negative organisms collected from the Asia-Pacific Rim between 2004 and 2007.

Organism/antimicrobial agent	MIC (mg/L)	MIC (mg/L)		%/	%R
	MIC ₉₀	Range			
Acinetobacter spp. (n= 447)					
Amikacin	≥128	≤0.5 to ≥128	67.1	3.1	29.8
Cefepime	≥64	≤0.5 to ≥64	54.2	6.0	39.8
Ceftazidime	≥64	≤8 to ≥64	50.4	4.9	44.7
Ceftriaxone	≥128	≤0.06 to ≥128	33.3	22.1	44.6
Imipenem ^a	≥32	0.12 to ≥32	66.2	4.4	29.4
Levofloxacin	≥16	≤0.008 to ≥16	60.4	15.0	24.6
Minocycline	4	≤0.5 to ≥32	90.8	6.7	2.5
Piperacillin/tazobactam	≥256	≤0.06 to ≥256	55.3	9.6	35.1
Tigecycline	1	0.03-8	-	-	-

Fiperación razobaciam. Tigecycline

Table 3

In vitro activity of tigecycline and comparators against resistant Gram-positive and Gram-negative organisms collected from the Asia-Pacific Rim between 2004 and 2007.

0.03-8

Organism/antimicrobial agent	MIC (mg/L)		%S	%1	%R
	MIC ₉₀	Range			
MDR Acinetobacter spp. (n = 153)					
Amikacin	≥128	1 to ≥128	22.9	4.6	72.5
Cefepime	≥64	4 to ≥64	3.3	6.5	90.2
Ceftazidime	≥64	≤8 to ≥64	0.7	1.3	98.0
Ceftriaxone	≥128	8 to ≥128	0.7	2.0	97.3
Imipenem ^a	≥32	0.25 to ≥32	20.2	9.2	70.6
Levofloxacin	≥16	0.25 to ≥16	15.0	27.5	57.5
Minocycline	8	≤0.5 to ≥32	75.8	17.0	7.2
Piperacillin/tazobactam	≥256	0.12 to ≥256	4.6	3.9	91.5
Tigecycline	2	0.12-8	-		-
815155166666666666666666666666666666666	8989898989898989898	6888888888888888	844444444444		in the second
Tigecycline	200000000000000000000000000000000000000	0.12-8	64946666666666	1999-1999-1997-1997	
Piperacillin taxobactant	2556	0.12 to 2256	5555667467577	5555335555	Control date:
0.0.0.0.0.0.0.0.0.0.0.0.0	0.0.0.0.0.0.0.0.0.	0-	0-		1 2 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2

In vitro activity of tigecycline and comparators against Gram-negative organisms collected from the Asia-Pacific Rim between 2004 and 2007.

Organism/antimicrobial agent	MIC (mg/L)		%S	%/	%R
	MIC ₉₀	Range			
Acinetobacter spp. (n= 447)					
Amikacin	≥128	≤0.5 to ≥128	67.1	3.1	29.8
Cefepime	≥64	≤0.5 to ≥64	54.2	6.0	39.8
Ceftazidime	≥64	<u>≤</u> 8 to <u>≥</u> 64	50.4	4.9	44.7
Ceftriaxone	≥128	≤0.06 to ≥128	33.3	22.1	44.6
Imipenem ^a	≥32	0.12 to ≥32	66.2	4.4	29.4
Levofloxacin	≥16	≤0.008 to ≥16	60.4	15.0	24.6
Minocycline	4	≤0.5 to ≥32	90.8	6.7	2.5
Piperacillin/tazobactam	>256	≤0.06 to ≥256	55.3	9.6	35.1
Tigecycline	1	0.03-8	-	-	-

Fiperación razobaciam. Tigecycline

Table 3

In vitro activity of tigecycline and comparators against resistant Gram-positive and Gram-negative organisms collected from the Asia-Pacific Rim between 2004 and 2007.

0.03-8

Organism/antimicrobial agent	MIC (mg/L)		%S	%1	%R
	MIC ₉₀	Range			
MDR Acinetobacter spp. (n = 153)					
Amikacin	≥128	1 to ≥128	22.9	4.6	72.5
Cefepime	≥64	4 to ≥64	3.3	6.5	90.2
Ceftazidime	≥64	<u>≤</u> 8 to <u>≥</u> 64	0.7	1.3	98.0
Ceftriaxone	≥128	8 to ≥128	0.7	2.0	97.3
Imipenem ^a	≥32	0.25 to ≥32	20.2	9.2	70.6
Levofloxacin	<u>≥</u> 16	0.25 to ≥16	15.0	27.5	57.5
Minocycline	8	≤0.5 to ≥32	75.8	17.0	7.2
Piperacillin/tazobactam	≥256	0.12 to ≥256	4.6	3.9	91.5
Tigecycline	2	0.12-8	-		-
5-5-5-6-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5	678764576767676767676	888888888888888	88888888888		ALCONTRACT.
Tigecydine	868888888888	0.12-8	848666666666		
Piperacillin taxobactana	225G	0.12 to _256	599959595 46 767575	40000000000	2020-0-00120
HE REELECTION CONTRACTOR CONTRACTOR				193933665555	a da

Blood Stream infection

Be very cautious when treating serious infections!

Blood Stream infection

Treatment Failure in Bacteremia

- Steady-state peak serum concentration of tigecycline after IV tigecycline 50mg doses was 0.62 – 0.72 mg/L
- MIC90 for MDRA = 2 mg/L

Raised MIC90 associated with worse prognosis

	Resistance	Initial TIG MIC	Therapy	Coodministered	Response		Final
Causative organism	mechanism	μg/mL	days	antibiotics	Clinical	Microbiological	disposition ^b
		3.00 (I)	7	FEP°	Negative	ND	Died (related)
	🤇	1.00 (S)	15	VAN ^d	Positive	Positive	Alive
		3.00 (I)	28	AMK, COL	Negative	Negative	Died (related)
		3.00 (I)	10	COL (inhaled)	Negative	ND	Died (related)
	🤞	2.00 (S)	49	None	Positive	Positive	Alive
	💊	ND	8	TOB (inhaled)	Positive	ND	Alive
	—	3.00 (I)/ 2.00 (S)	8	ТОВ	Negative	ND	Died (related)
	🔉	1.00 (S)	17	None	Positive	Positive	Alive
		3.00 (I)	17	LEV°	Positive	ND	Alive
	🤻	2.00 (S)	42	None	Uncertain	ND	Alive

Anthony KB, Fishman NO, Linkin DR et al. Clinical and microbiological outcomes of serious infections with multidrug-resistant Gram-negative organisms treated with tigecycline. Clin Infect Dis 2008; 46: 567–70.

Raised MIC90 associated with worse prognosis

	Resistance	Initial TIG MIC.	Therapy duration	Coadministered	Re	sponse	Final
ausative organism	mechanism	μg/mL	days	antibiotics	Clinical	Microbiological	disposition ^b
		3.00 (I)	7	FEP°	Negative	ND	Died (related)
		1.00 (S)	15	VAN ^d	Positive	Positive	Alive
		3.00 (I)	28	AMK, COL	Negative	Negative	Died (related)
		3.00 (I)	10	COL (inhaled)	Negative	ND	Died (related)
		2.00 (S)	49	None	Positive	Positive 🥜	Alive
		ND	8	TOB (inhaled)	Positive	ND 💊	Alive
		3.00 (I)/ 2.00 (S)	8	ТОВ	Negative	ND 🥪	Died (related)
		1.00 (S)	17	None	Positive	Positive	Alive
		3.00 (I)	17	LEVª	Positive	ND	Alive
		2.00 (S)	42	None	Uncertain	ND	Alive

Anthony KB, Fishman NO, Linkin DR et al. Clinical and microbiological outcomes of serious infections with multidrug-resistant Gram-negative organisms treated with tigecycline. Clin Infect Dis 2008; 46: 567–70.

Raised MIC90 associated with worse prognosis

lable 1. (Continued	.)						
	Resistance	Initial TIG MIC.	Therapy duration,	Coadministered	Re	esponse	Final
Causative organism	mechanism	µg/mL	days	antibiotics	Clinical	Microbiological	disposition ^b
						5	3
		3.00 (I)	7	FEP°	Negative	ND	Died (related)
		1.00 (S)	15	VAN ^d	Positive	Positive	Alive
		3.00 (I)	28	AMK, COL	Negative	Negative	Died (related)
		3.00 (I)	10	COL (inhaled)	Negative	ND	Died (related)
		2.00 (S)	49	None	Positive	Positive 🥜	Alive
		ND	8	TOB (inhaled)	Positive	ND 💊	Alive
		3.00 (I)/ 2.00 (S)	8	ТОВ	Negative	ND	Died (related)
		1.00 (S)	17	None	Positive	Positive	Alive
		3.00 (I)	17	LEV°	Positive	ND	Alive
		2.00 (S)	42	None	Uncertain	ND	Alive

Anthony KB, Fishman NO, Linkin DR et al. Clinical and microbiological outcomes of serious infections with multidrug-resistant Gram-negative organisms treated with tigecycline. Clin Infect Dis 2008; 46: 567–70.

Case reports of **Resistance development** during tigecycline therapy in *A.baumannii* infections

Schafer JJ et al.. Pharmacotherapy 2007; 27: 980–7

Anthony KB et al. Clin Infect Dis 2008; 46: 567–70.

Associated with clinical failure

Multi-drug efflux pump-AdeABC

Polymyxin

What was old is new again!

In the old days....

- Used in 1960s for gram negative infections
- polymyxin B & polymyxin E
- Abandoned during 1970s because of toxicity (neuro and nephro) and when better tolerated antipseudomonal agents were available

How does Colistin act?

- Targets the anionic LPS molecules in the outer membranes of gram negative bacteria, leading to membrane disturbance and osmotic instability
- Bactericidal
- Anti-endotoxin (neutralise bacterial lipopolysaccharides)

Active against most aerobic gram negative bacilli

Polymxin E = Colistin

2 salt forms *Colistin sulphate →used in MIC testing ➡oral / topical ***Colistin methanesulphonate (CMS)** also known as colistimethate sodium non-active prodrug of colistin - not used in MIC testing - IV / inhalation

Formation of Colistin from CMS

Colistin Breakpoint

	<u>Susceptible</u>	<u>Resistant</u>
CLSI (2007)	<u><</u> 2 mg/L	<u>></u> 4 mg/L
EUCAST (2008)	<2 mg/L	> 2 mg/L

Disk diffusion methods are unreliable for susceptibility testing because polymixin diffuse poorly in agar

Good Activities

SENTRY antimicrobial surveillance programme 2001-04

	MIC90	Range	% R
Acinetobacter spp.	2	<u>≤1 ->8</u>	2.1
Pseudomonas spp.	<1	≤1 - >8	1.3

Rapid Killing Action

FIG. 1. Time-kill curves of CMS against *A. baumannii* at maximum serum drug concentrations of $3 \mu g/ml$ (\blacklozenge), $6 \mu g/ml$ (\bigcirc), $12 \mu g/ml$ (\blacktriangle), and $24 \mu g/ml$ (\square). The growth control (\times) is also depicted.

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Sept. 2007, p. 3431-3433

Rapid Killing Action

 \geq 3 log kill achieved within 30 – 90 minutes

FIG. 1. Time-kill curves of CMS against *A. baumannii* at maximum serum drug concentrations of $3 \mu g/ml$ (\blacklozenge), $6 \mu g/ml$ (\bigcirc), $12 \mu g/ml$ (\blacktriangle), and $24 \mu g/ml$ (\square). The growth control (\times) is also depicted.

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Sept. 2007, p. 3431-3433

Good Clinical Efficacy Across a range of infections

Efficacy and safety of colistin (CMS) for therapy of infections caused by MDR-PA and MDR-AB

- Prospective cohort
- pneumonia (69%), bacteremia (12%), intra-abd (6%), UTI (5%), skin/soft tissue (5%), sinus (1%)
- Colistin (n=78) vs other antibiotics of physician's choice (n=15)

Treatment outcomes						
Outcome	Colistin group (n=78)	Non-Colistin (n=15)	p value			
Good Clinical response	63 (80.8%)	4 (26.7%)	<0.001			
All cause mortality <30 days	36 (46.2%)	12 (80%)	0.03			
Microbiological response	74 (94.9%)	0	<0.001			
Nephrotoxicity	24 (30.8%)	10 (66.7%)	0.02			
Neruotoxicity	0	0				

Safety and efficacy of colistin in *Acinetobacter* and *Pseudomonas* infections: a prospective cohort study

- pneumonia (53%), UTI (18%), bacteremia (16%), others (CNS, peritonitis, wound)
- Colistin (n=55) vs Non-colistin (n=130) (carbapenem 80%)

	Colistin (n=55)	Non-colistin (n=130)
improvement on D6	15%	17%
Mortality	29%	26%
Microbiological Eradication	93%	94%

Treatment of MDR-AB VAP with IV colistin: a comparison with imipenem-susceptible VAP

- prospective cohort
- pneumonia (100%)
- colistin (n=21) vs carbapenem+/-others (n=14)

	Colistin (n=21)	Non-colistin (n=14)
Clinical cure	57%	57%
Mortality	38%	36%
Microbiological Eradication	67%	50%

Garnacho-Montero. CID 36:1111-1118.

Synergy?

- In-vitro / Animal Studies
- Evidence of synergy between colistin and various antimicrobial agents
 - (carbapenem, rifampicin,
 - ceftazidime)

Diagnostic Microbiology and Infectious Disease 40 (2001) 117–120

In-vitro Study

- Pre-exposing beta-lactam resistant strains to colistin may restore activity to the beta-lactam
- **Control**: meronem MIC90 = 8
- pre-expose to colistin: meronem MIC90 = 1.5
- NOT all isolates would demonstrate the pheonmonen

Ullman, M et al ICAAC 2008

Disruption of outer cell membrane

Limited human studies in Colistin combination therapy

Toxicity of Colistin

Nephrotoxicityin the PAST

- Studies in 60s to 70s reported incidence of up to 50%
- Many NOT include definition of nephrotoxicity
- HIGHER total daily doses than now recommended
- **Koch-Weser et. al.** (Ann Intern Med **1970**, 72:857)
 - 288 patients / 317 courses
 - colistin dosage: <1g to >2g per day
 - renal insufficiency: 63 courses
 - acute tubular necrosis: 6 patients

Nephrotoxicity-Nowadays

Treatment	Outcomes
in o activition re	

Outcomes	Colistin (n=78)	Non-colistin (n=15)	p Value
Nephrotoxicity	24 (39.8%)	10 (66.7%)	0.02
Neurotoxicity	0	0	

- Nephrotoxicity in colistin group < non-colistin group
- Mild and reversible
- Other contributing factors: nephrotoxic drug, hypovolemia

Pornpan et al. Int J Infect Dis (2007) 11, 402-406

Toxicity-Less than Previously Thought

*Intensive Care Med. 2007 Jul;33(7):1162-7. Epub 2007 May 25 *Rosa Reina. Intensive Care Med (2005) 31:1058–106

Possible Mechanisms

- Nephrotoxicity of polymyxins may be partly due to their D-amino acid content and fatty acid component
- Proposed mechanism: polymyxin increases membrane permeability, resulting in an increased influx of cations, anions, and water, leading to cell swelling and lysis

Colistin-Neurotoxicity

- Toxicity of polymyxins: a systematic review of the evidence from old and recent studies (Critical Care 2006, 10:R27)
 - **Old studies:** incidence up to 30%
 - Recent studies: lower incidence
 - 4 out of 24 studies had patients developing neurotoxicity
 - 2 patient had diffuse muscular weakness
 - 1 seizure
 - 2 polyneuropathy

Dilemmas of Colistin: PK/PD

- Not known if data from in vitro testing with colistin sulphate are predictive of in vivo activity of CMS
- Limited pharmacokinetic data
- Limited pharmacodynamic data
- Optimal dosing regimen as yet undetermined

Commercial Preparation of CMS

Colomycin Injection ® (Europe / HK)

Coly-Mycin M Parenteral ® (USA / Australia)

This 2 parenteral products are <u>not</u> equal

Commercial Preparation of CMS

Coly-Mycin M Parenteral ® (USA / Australia)

Colomycin Injection (Europe / HK)

0.5 million IU (40mg of CMS) 1 million IU (80mg of CMS) 2 million IU (160mg of CMS)

480mg/day or 6MU/day for 60kg BW

Colomycin Injection (Europe / HK)

0.5 million IU (40mg of CMS) 1 million IU (80mg of CMS) 2 million IU (160mg of CMS)

480mg/day or 6MU/day for 60kg BW

Our Experience in Colistin Use.....

Site of Isolation

Results

N = 40

RFT deterioration after use

All-cause Hospital Mortality

8

25 (63%)

Microbiological clearance

17/28 (60%) 12 (undetermined)

Bring Home Messages

MDROs – emerging threat locally and globally

Tigecycline

- no interpretative MIC breakpoint
- raised MIC associated with worse prognosis
- resistance could develop during treatment
- not a good choice for serious and bloodstream infection

Colistin

- Iow resistance rate
- efficacy appears to be promising
- Iess nephrotoxic / neurotoxic than previously thought
- requires further studies on pharmacokinetics and pharmacodynamics

