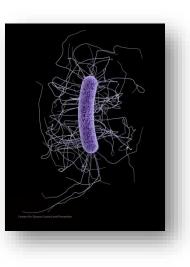


One Health perspective on *Clostridioides difficile* infection

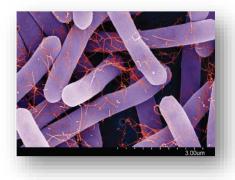
Dazhi Jin

School of Medical Laboratory, Hangzhou Medical College

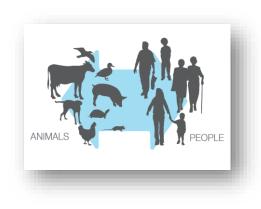

Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province 2023.12.08

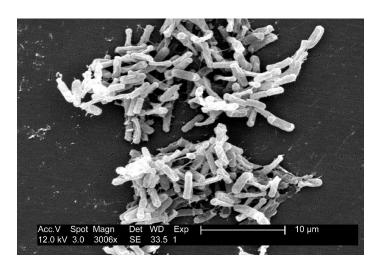
jind@hmc.edu.cn

- Background on *Clostridioides difficile*
- *C. difficile* infection in human in China
- C. difficile in animals, food, and environment and clonal transmission
- C. difficile in animals in China
- Take home message

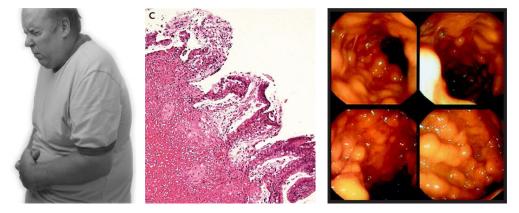


.


Clostridioides difficile


- Firstly found in 1935, called as *Bacillus difficilis*
- G-positive, spore forming obligate anaerobe
- Widely found in environment, animal and human as a <u>zoonotic pathogen</u>
- Colonization resistance: 4-15% health people, 21% inpatients, 15-30%

long-term inpatients



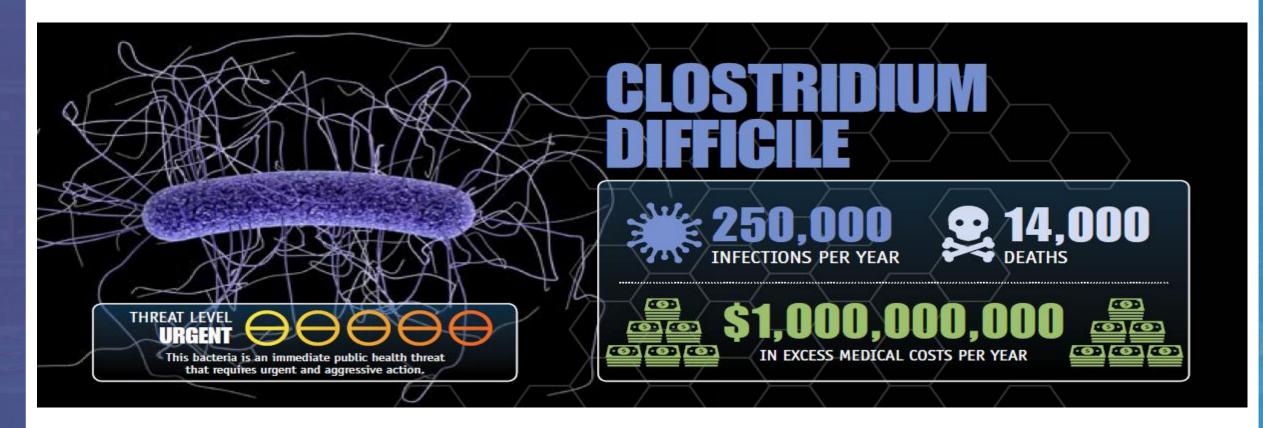
CDC/ Lois S. Wiggs (PHIL #6260), 2004

<complex-block>

Clostridioides difficile infection, CDI

- Diarrhea
- Belly tenderness or pain
- Fever
- Nausea
- Kidney failure
- Toxic megacolon
- Sepsis

Kawamoto S, et al. Radiographics, 1999, 19(4): 887-897.


CDI is 12–14 times more common than Methicillinresistant *Staphylococcus aureus* (MRSA) bacteraemia*

RIP

The importance of CDI

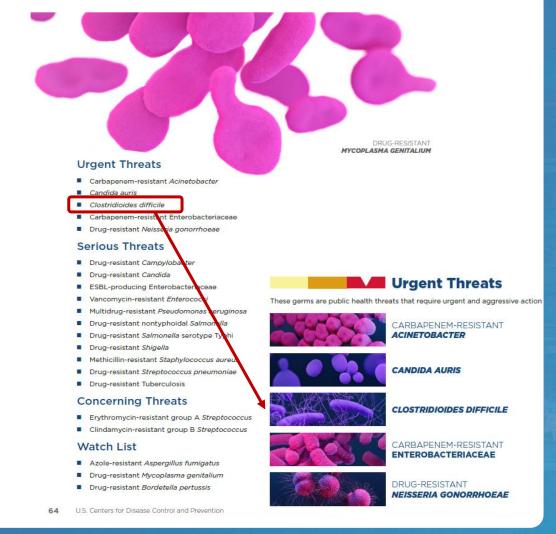
C. difficile is considered as an **immediate** public health threat that required urgent and aggressive action.

The importance of CDI

ANTIBIOTIC RESISTANCE THREATS in the United States, 2013

Urgent Threats

- Clostridium difficile
- Carbapenem-resistant Enterobacteriaceae (CRE)
- Drug-resistant Neisseria gonorrhoeae


Serious Threats

- Multidrug-resistant Acinetobacter
- Drug-resistant Campylobacter
- Fluconazole-resistant Candida (a fungus)
- Extended spectrum β-lactamase producing Enterobacteriaceae (ESBLs)
- Vancomycin-resistant Enterococcus (VRE)
- Multidrug-resistant Pseudomonas aeruginosa
- Drug-resistant Non-typhoidal Salmonella
- Drug-resistant Salmonella Typhi
- Drug-resistant Shigella
- Methicillin-resistant Staphylococcus aureus (MRSA)
- Drug-resistant Streptococcus pneumoniae
- Drug-resistant tuberculosis

Concerning Threats

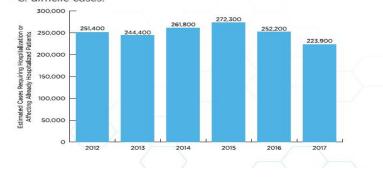
- Vancomycin-resistant Staphylococcus aureus (VRSA)
- Erythromycin-resistant Group A Streptococcus
- Clindamycin-resistant Group B Streptococcus

ANTIBIOTIC RESISTANCE THREATS in the United States, 2019

The importance of CDI

Clostridioides difficile (C. difficile) bacteria can cause life-threatening diarrhea. Infections occur most often in people who have taken antibiotics for other conditions. It is the most common healthcare-associated infection.

WHAT YOU NEED TO KNOW


- While healthcare-associated C. difficile cases are decreasing, community-associated cases are not.
- Strategies to reduce C. difficile infections include improving antibiotic use, infection control, and healthcare facility cleaning and disinfection.
- C. difficile infections are more common and tend to be more severe in older patients.

Previously Clostridium difficile. Also called C. diff. Cost includes hospitalonset cases only.

CASES OVER TIME

Continued appropriate infection control, antibiotic use, and diagnostic testing are important to maintain decreases in *C. difficile* cases.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Trends in U.S. Burden of *Clostridioides difficile* Infection and Outcomes

A.Y. Guh, Y. Mu, L.G. Winston, H. Johnston, D. Olson, M.M. Farley,
L.E. Wilson, S.M. Holzbauer, E.C. Phipps, G.K. Dumyati, Z.G. Beldavs,
M.A. Kainer, M. Karlsson, D.N. Gerding, and L.C. McDonald, for the Emerging Infections Program *Clostridioides difficile* Infection Working Group*

Table 1. Reported Cases of Clostridioides difficile Infection (CDI) and Crude Incidence, According to Epidemiologic Class, at 10 U.S. Emerging Infections Program Sites, 2011–2017.*

Surveillance Year	Population ≥1 Yr of Age	Community	-Associated CDI	Health Care	-Associated CDI	,	
		No. of Cases	Incidence per 100,000 Persons	No. of Cases	Incidence per 100,000 Persons	No. of Cases	Incidence per 100,000 Persons
	no.						
2011	10,971,319	5284	48.16	10,177	92.76	15,461	140.92
2012†	11,283,326	5967	52.88	10,482	92.90	16,449	145.78
2013	11,552,955	6441	55.75	9,938	86.02	16,379	141.77
2014	11,533,856	6669	57.82	9,662	83.77	16,331	141.59
2015	11,682,427	7697	65.89	9,655	82.65	17,352	148.53
2016	11,777,482	7915	67.20	8,881	75.41	16,796	142.61
2017	11,906,512	7539	63.32	7,973	66.96	15,512	130.28

Molecular epidemiology of *Clostridioides difficile* infection has been changing.....

CDI in human in China SCIENTIFIC REPORTS

OPEN The incidence and drug resistance of Clostridium difficile infection in Mainland China: a systematic review and meta-analysis

Received: 11 April 2016 Accepted: 20 October 2016 Published: 29 November 2016

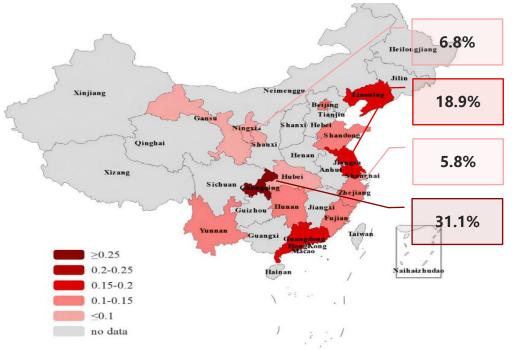
Chenjie Tang^{1,*}, Lunbiao Cui^{2,*}, Yuqiao Xu¹, Le Xie¹, Pengfei Sun¹, Chengcheng Liu¹, Wenying Xia¹ & Genyan Liu¹

Fielding ing	
Xin Jiang Neimonggu Pulanning Lianning Umrgin Shandong Dinghai Osmu	
Xizang Sichuan Chargen User Si	
no data < 0.1072 0.1072 ⁻ 0.1284 0.128 ⁻ 0.1564 Hainan	
>= 0.1905	

Antimicrobial agents	Drug resistance (95%CI) (%)	Chi-squared	Р	I-squared	Model	n/N	References
Metronidazole	0	_	_	_	_	0/960	23–29, 40, 54, 94
Vancomycin	0	_	_	_	_	0/960	23–29, 40, 54, 94
Tigecycline	0	_	_	_	_	0/41	27, 94
Piperacillin/Tazobactam	0	_	_	_	_	0/288	24, 40, 54
Erythromycin	80.2(73.5-86.9)	8.26	0.041	63.70%	REM	340/433	25, 26, 40, 54, 94
Clindamycin	81.7(76.1-87.3)	13.08	0.023	61.80%	REM	476/581	24–27, 29, 40, 54, 94
Tetracycline	46.8(36.7-56.9)	15.9	0.001	81.10%	REM	231/498	26, 29, 40, 54
Moxifloxacin	39.0(27.9-50.1)	38.79	0	84.50%	REM	247/549	24–26, 29, 40, 54, 94
Ciprofloxacin	98.3(96.9-99.7)	0	_	_	FEM	688/694	28, 29, 40, 54
Fusidic acid	16.8(5.4-28.2)	21.06	0	90.50%	REM	72/404	26, 40, 54
Rifampicin	18.3(7.2-29.4)	59.61	0	93.30%	REM	89/527	25, 26, 29, 40, 54, 94
Rifaximin	22.1(17.1-27.0)	2.48	0.115	59.70%	FEM	60/600	28, 40, 54
Meropenem	8.8(-8-25.6)	6.25	0.012	84.00%	REM	11/388	24, 27, 28
Levofloxacin	60.2(44.4-75.9)	97.42	0	94.9%	REM	436/779	26-28, 40, 54, 94

MLST	Molecular epidemiology of <i>C. difficile</i> (95% CI) (%)	Chi-squared	Р	Model	n/N	References
ST-1	0	_		_	0/407	19, 23, 24, 27, 82, 87
ST-2	0.086(0.05-0.118)	1.41	0.494	FEM	26/288	24, 38, 78
ST-3	0.181(0.083-0.278)	8.36	0.039	REM	67/295	24, 38, 78, 92
ST-11	0	_		—	0/280	24, 27, 82, 87
ST-26	0.123(0.042-0.204)	0.5	0.479	FEM	8/62	24, 78
ST-35	0.136(0.063-0.210)	16.00	0.003	REM	64/455	36, 38, 78, 87, 92
ST-37	0.172(0.122-0.221)	43.77	0	REM	152/913	19, 24, 36–38, 42, 77–78, 82, 87, 92–94
ST-39	0.159(0.068-0.250)	0.17	0.68	FEM	10/62	24, 78
ST-54	0.167(0.098-0.237)	50.99	0	REM	146/711	24, 36, 38, 42, 77–78, 82, 87, 93

Update


Contents lists available at ScienceDirect

International Journal of Infectious Diseases

Prevalence and molecular characterization of *Clostridioides difficile* infection in China over the past 5 years: a systematic review and meta-analysis

Bao-Jiang Wen^{1,2,†}, Ning Dong^{1,2,†}, Zi-Rou Ouyang^{1,2,†}, Pu Qin^{1,2}, Jing Yang^{1,2}, Wei-Gang Wang^{1,2}, Cui-Xin Qiang^{1,2}, Zhi-Rong Li^{1,2}, Ya-Nan Niu^{1,2}, Jian-Hong Zhao^{1,2,*}

Table 2

Pooled prevalence of C. difficile infection in China.

	No. studies	n/N	Prevalence of CDI (95% confidence interval) (%)	-
legion				
Southern	27	2423/24786	11.0 (8.4-13.8)	11.0%
Northern	6	273/2066	13.6 (9.4-18.5)	13.6%
opulation				13.070
Inpatients	26	1627/16974	11.5 (8.6-14.7)	
Outpatients	1	115/804	14.3 (12.0-16.9)	
Community individuals	3	370/2874	11.7 (6.7-17.8)	
Route of acquisition				
Community-acquired CDI	5	500/4517	9.5 (4.4-16.2)	9.5%
Hospital-acquired-CDI	10	702/8024	13.3 (8.0-19.8)	13.3%
Overall	38	3006/29284	12.7 (10.3-15.1)	101070

The main C. difficile genotypes reported in China.

	n/N	Molecular epidemiology of <i>C. difficile</i> (95% confidence interval) (%)
China		
ST54/RT012	784/5627	14.0 (12.1-15.9)
ST3	627/4867	12.9 (11.2-14.6)
ST37/RT017	531/4384	10.1 (8.0-12.4)
ST2	452/4394	9.7 (8.8-10.6)
ST35/RT046	407/4145	9.3 (7.4-11.3)
ST81	444/3374	6.9 (3.4-11.5)
RT027	10/1186	0.7 (0.2-1.3)
RT078	12/2153	0.0 (0.0-0.4)
Southern China		
ST54/RT012	612/3971	16.0 (13.6-18.5)
ST3	449/3349	13.6 (11.7-15.8)
ST37/RT017	374/2765	11.6 (8.6-14.9)
ST2	270/2988	8.4 (7.4-9.5) ST2: 8.49
ST35/RT046	311/2776	11.1 (9.0-13.3)
ST81	270/2143	5.9 (1.8-11.9)
RT027	2/339	0.4 (0.0-1.5)
RT078	1/784	0.0 (0.0-0.2)
Northern China		
ST54/RT012	140/1319	10.1 (8.5-11.9)
ST3	148/1319	11.0 (8.1-14.4)
ST37/RT017	114/1282	7.1 (4.4-10.3)
ST2	153/1069	13.9 (11.8-16.1) ST2 : 13.9
ST35/RT046	60/1032	5.6 (3.2-8.5)
ST81	170/1032	9.5 (3.2-18.4)
RT027	6/510	0.6 (0.0-1.8)
RT078	2/1032	0.0 (0.0-0.1)

Molecular characteristics of CDI epidemiology have been more clarified, but community-acquired CDI should be further studied.

EPIDEMIOLOGY

Medical chart review (n=3,953)

Isolates un-retrievable

(n=21)

Total isolates

(n=411)

PCR

Multilocus sequence

typing

FAHZU

(n=1,820)

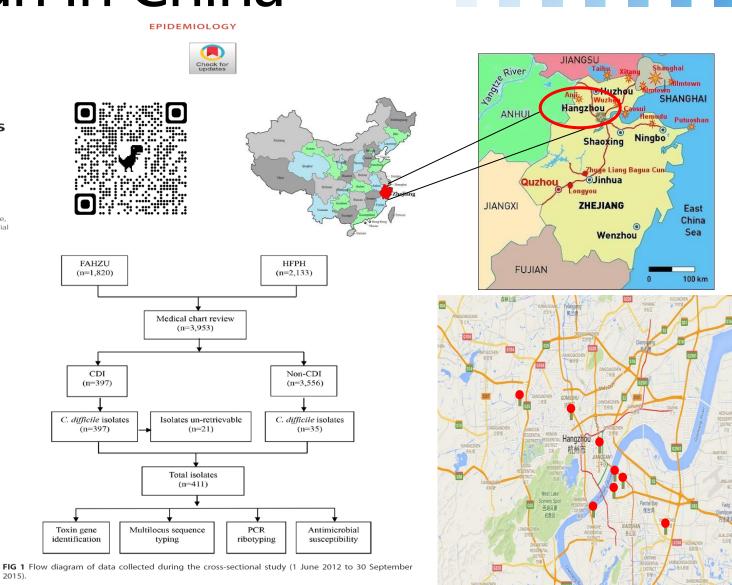
CDI (n=397)

C. difficile isolates

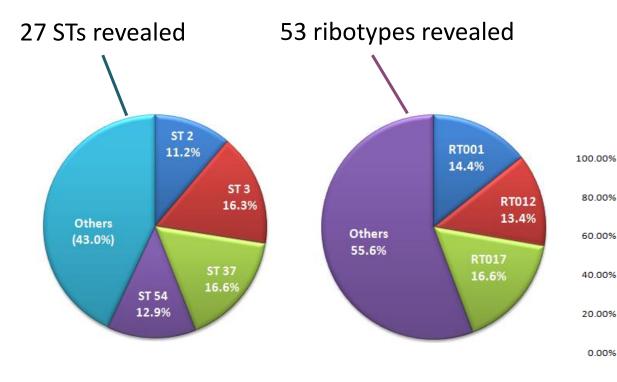
(n=397)

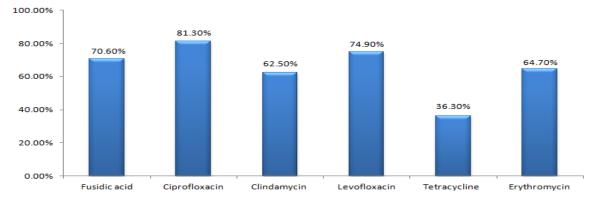
Toxin gene

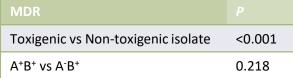
identification

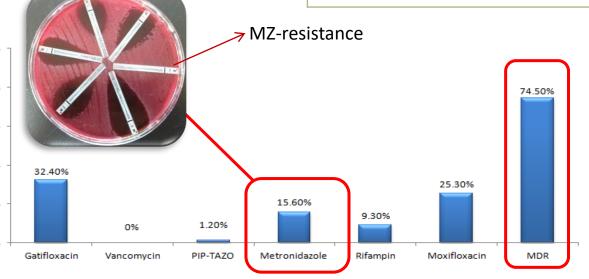

2015)

Molecular Epidemiology of Clostridium difficile Infection in Hospitalized Patients in Eastern China


Dazhi Jin,^{a,e} Yun Luo,^a Chen Huang,^a Jian Cai,^b Julian Ye,^a Yi Zheng,^c Liqian Wang,^d Peng Zhao,^c Anbing Liu,^d Weijia Fang,^c Xianjun Wang,^d Shichang Xia,^{a,b} Jianmin Jiang,^{a,b} ^(D)Yi-Wei Tang^{e,f}


Departments of Microbiology^a and Disease Control and Prevention,^b Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China; Biotherapy Center for Medical Oncology, the First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, Chinas; and Department of Laboratory Medicine, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China^d; Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center,^e and Department of Pathology and Laboratory Medicine,^f Weill Medical College of Cornell University, New York, New York, USA


- **Eight medical centers** belonging to two hospital alliances
- A cross-sectional study was conducted
- From June 2012 to September 2015 with two gaps
- All patients involved and identified
 - Hangzhou and nearby cities ٠
 - 2010 SHEA/IDSA definition
- Clinical data
 - Six CDI severities graded ٠
- Stool samples collected and shipped to ZJCDC's lab
 - Toxigenic *C. difficile* culture •
 - Detection of toxin genes
 - PCR ribotyping
 - Multilocus sequence typing
 - Antimicrobial susceptibility testing



- 282 (68.6%): A⁺B⁺ 94 (22.9%): A⁻B⁺ 35 (8.5%): A⁻B⁻
- No ribotype 027 with 18-bp deletion in tcdC

Assessment of Risk Factors for CDI

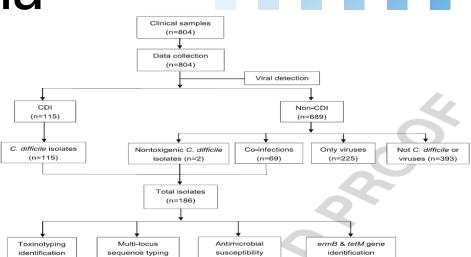
Darameters	No. (%) of clinic <i>difficile</i>	Multivariant logistic	
Previous hospitalization, yes Previous antibiotics treatment within 8 weeks, yes	Toxigenic <i>C. difficile</i> (n=397)	No toxigenic <i>C. difficile</i> (n=3,556)	P value
Years of age, >55	333 (83.9%)	1248 (35.1%)	< 0.001
Previous hospitalization, yes	300 (75.6%)	1613 (45.4%)	< 0.001
Previous antibiotics treatment within 8 weeks, yes	388 (97.7%)	2052 (57.7%)	< 0.001
Hospitalized stay over three days before sampling, yes	132 (33.3%)	663 (18.6%)	< 0.001
Chemotherapy, yes	101 (25.4%)	432 (12.2%)	< 0.001
Abdominal surgery, yes	208 (52.4%)	993 (27.9%)	< 0.001

Conclusions

- *C. difficile* is circulating in hospitalized patients with diarrhea in eastern China
 - A CDI prevalence of 10.0% was found
- The age threshold could be much younger in eastern China compared to those of developed countries
 - The age of >55 years was a risk factor for inpatients in eastern China
 - Different from the age of >64 years in the U.S and other developed regions
- The antimicrobial susceptibility profiles have changed dramatically
 - The resistance rate for fusidic acid (66.7%) was markedly higher than previously reported
 - Metronidazole resistances (15.6%) was reported
- The risk factors were identified in eastern China
 - Including advanced age, previous hospitalization, antibiotic administration, chemotherapy, abdominal surgery, and extended hospitalization
- The ST37/ribotype 017 strain is likely to be an emergent epidemic clone in China
 - Even though CDI severity is generally mild to moderate (2.61 \pm 1.01)
 - Severe cases were associated with ST37/RT017 genotypes

Shuai et al. BMC Infectious Diseases ______

https://doi.org/10.1186/s12879-020-05030-6


BMC Infectious Diseases

RESEARCH ARTICLE

Open Access

Molecular characteristics of *Clostridium difficile* in children with acute gastroenteritis from Zhejiang

Huiqun Shuai^{1†}, Qiao Bian^{2†}, Yun Luo^{3,4}, Xiaohong Zhou¹, Xiaojun Song⁵, Julian Ye³, Qinghong Huang¹, Zhaoyang Peng^{6,7}, Jun Wu⁸, Jianmin Jiang^{9*} and Dazhi Jin^{10*}

Table 1 Clinical information of outpatients participated in this study

Characteristics	2013 (<i>n</i> = 84)	2014 (<i>n</i> = 102)	2015 (<i>n</i> = 223)	2016 (<i>n</i> = 203)	2017 (<i>n</i> = 192)	Total ($n = 804$)	Table 2 Co	prrelations amo	ng MLST	types, to	xin genot	ypes, and	antimicr	obial susc	eptibil	ity patt	erns of the 1	86 C. difficile	isolate	2S
Gender, male n, (%)	55 (65.5)	70 (68.6)	128 (57.4)	129 (63.5)	119 (62.0)	501 (62.3)	Antimicrobial								Analys	sis	Toxinotypes ^c (no. [%] of non-		Analys	sis
Age (yr), Median, (IQR)	0.50 (0.25, 0.73)	0.50 (0.25, 1.00)	0.75 (0.42, 1.25)	0.75 (0.33, 1.25)	0.79 (0.47, 1.00)	0.67 (0.38, 1.00)	agent	of all the isolates							results	b	susceptible iso	olates)	results	S
Age (yr) n, (%)								(<i>n</i> = 186)	ST26	ST35	ST39	ST54	ST152	Other STs ^a	χ^2	P value		A ⁻ B ⁺	χ ²	P value
< 6 months (ms)	40 (47.6)	36 (35.3)	70 (31.4)	65 (32.0)	48 (25.0)	259 (32.2)			(n = 33)	(n = 21)	(<i>n</i> = 23)	(n = 31)	(n = 21)	(n = 57)		_	(n = 145)	(n = 39)	_	
6 ms~	32 (38.1)	40 (39.2)	67 (30.0)	67 (33.0)	60 (31.3)	266 (33.1)	Clindamycin	159 (85.5)	33 (100.0)	21 (100.0)	18 (78.3)	30 (96.8)	13 (61.9)	44 (77.2)	F	< 0.001	125 (86.2)	34 (87.2)	0.02	0.875
1 yr~	6 (7.1)	16 (15.7)	43 (19.3)	42 (20.7)	55 (28.6)	162 (20.1)	Erythromycin	160 (86.0)	33 (100.0)	21 (100.0)	23 (100.0)	30 (96.8)	7 (33.3)	46 (80.7)	F	< 0.001	120 (82.8)	39 (100.0)	7.78	0.005
2 yr~	6 (7.1)	10 (9.8)	43 (19.3)	29 (14.3)	29 (15.1)	117 (14.6)	Fusidic acid	129 (69.4)	12 (36.4)	15 (71.4)	15 (65.2)	28 (90.3)	20 (95.2)	39 (68.4)	30.18	< 0.001	102 (70.3)	27 (69.2)	0.02	0.893
Occupation, Scattered children	81 (96.4)	101 (99.0)	216 (96.9)	193 (95.1)	186 (96.9)	777 (96.6)	Rifampin	7 (3.8)	0	0	5 (21.7)	0	1 (4.8)	1 (1.8)	F	0.001	2 (1.4)	5 (12.8)	8.09	0.004
Fever, > 38.5 °C	17 (20.2)	24 (23.5)	66 (29.6)	44 (21.7)	65 (33.9)	216 (26.9)	1		19 (57.6)	21 (100.0)										
C. difficile isolates n, (%)	11 (13.1)	35 (34.3)	60 (26.9)	36 (17.7)	44 (22.9)	186 (23.1)	Levofloxacin	148 (79.6)	19 (57.0)	21 (100.0)	16 (69.6)	24 (77.4)	21 (100.0)	(****)	Г	< 0.001	117 (80.7)	30 (76.9)		0.602
Only toxigenic C. difficile, CA-CDI	10 (11.9)	23 (22.5)	40 (17.9)	26 (12.8)	16 (8.3)	115 (14.3)	Moxifloxacin	14 (7.5)	0	0	6 (26.1)	0	1 (4.8)	7 (12.3)	F	0.001	3 (2.1)	11 (28.2)	29.26	< 0.001
Co-infections	1 (1.2)	11 (10.8)	19 (8.5)	<u>1</u> 0 (<u>4.</u> 9)	28 (14.6)	69 (8.6)	Gatifloxacin	14 (7.5)	0	0	6 (26.1)	0	1 (4.8)	7 (12.3)	F	0.001	3 (2.1)	11 (28.2)	29.26	< 0.001
Total viral infections	4 (4.8)	23 (22.5)	88 (39.5)	63 (31.0)	116 (60.4)	294 (36.6)	Tetracycline	17 (9.1)	0	11 (52.4)	0	1 (3.2)	0	5 (8.8)	F	< 0.001	13 (9.0)	4 (10.3)	0.06	0.805
Rotavirus group A ^a	2 (2.4)	0	44 (19.7)	30 (14.8)	47 (24.5)	123 (15.3)	Metronidazole	0	0	0	0	0	0	0	N/A	N/A	0	0	N/A	N/A
Norovirus Gl & Gll ^b	1 (1.2)	20 (19 <u>.6)</u>	19 (8.5)	26 (12.8)	32 (16.7)	9 <u>8 (12.2</u>)	Vancomycin		0	0	0	0	0	0	N/A	N/A	0	0	NI/A	N/A
Astrovirus	1 (1.2)	0	3 (1.3)	0	3 (1.6)	7 (0.9)		0	0	0	0	0	0	0			0	Ŭ.		
Sapovirus	0	1 (1.0)	9 (4.0)	3 (1.5)	3 (1.6)	16 (2.0)	PIP-TAZ	0	0	0	0	0	0	0	N/A	N/A	0	0	N/A	N/A
Adenovirus	0	2 (2.0)	4 (1.8)	3 (1.5)	1 (0.5)	10 (1.2)	Ciprofloxacin	184 (100.0)	33 (100.0)	21 (100.0)	23 (100.0)	31 (100.0)	21 (100.0)	57 (100.0)	N/A	N/A	145 (100.0)	39 (100.0)	N/A	N/A
Multiple viruses	0	0	9 (4.0)	1 (0.5)	30 (15.6)	40 (5.0)	MDR	166 (89.2)	33 (100.0)	21 (100.0)	21 (91.3)	30 (96.8)	15 (71.4)	46 (80.7)	F	0.001	129 (89.0)	37 (94.9)	0.64	0.425

Emerging Microbes & Infections https://doi.org/10.1080/22221751.2019.1682472

OPEN ACCESS Check for updates

Different molecular characteristics and antimicrobial resistance profiles of *Clostridium difficile* in the Asia-Pacific region*

Yun Luo^{a,b}, Elaine Cheong^{c,d}, Qiao Bian^e, Deirdre A. Collins ^b^f, Julian Ye^a, Jeong Hwan Shin^{g,h}, Wing Cheong Yamⁱ, Tohru Takata^{j,k}, Xiaojun Song^l, Xianjun Wang^m, Mini Kamboj^{n,o}, Thomas Gottlieb^{c,d}, Jianmin Jiang^{a,p}, Thomas V. Riley ^b^{q,r}, Yi-Wei Tang^{n,o} and Dazhi Jin ^b^{1,s,a}

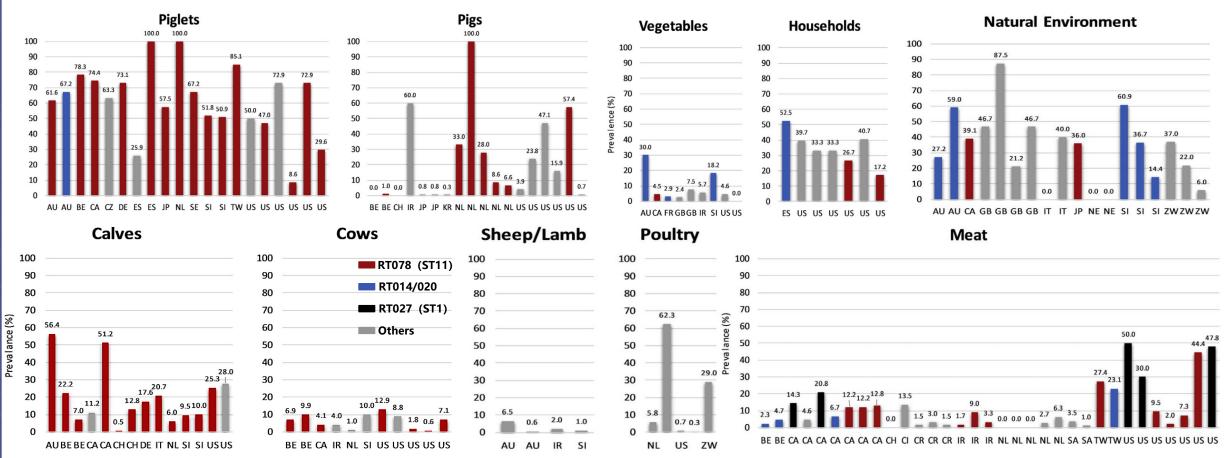
• The dominant STs varied in different regions

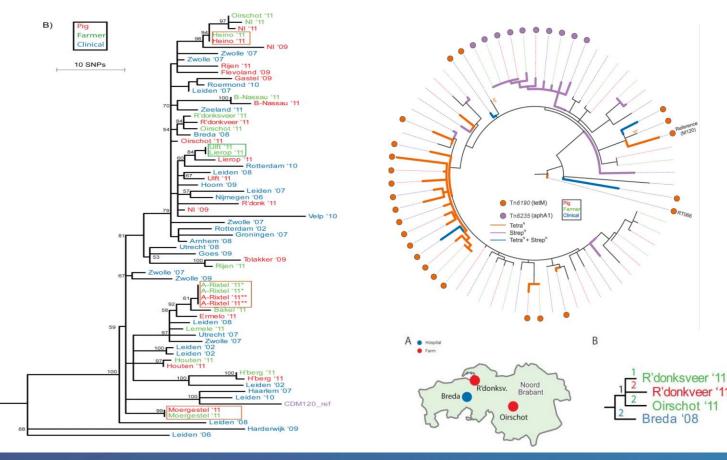
ST8 in Hongkong (20.0%)
ST17 in Busan (56.0%), Fukuoka (18.6%)
ST2 in Sydney (20.4%), Perth (25.8%)
ST63 in Singapore (31.0%)
ST3 (20%), ST37 (26.0%) and ST54 (20.0%) in Hangzhou
ST42 in New York (18.3%)

ST3 **ST8** ST3 ST17 ST35 ST37 ST39 ST42 ST63 ST81 Hong Kong Sydney Fukuoka Busan == ST110 Other STs Perth Hangzhou New York

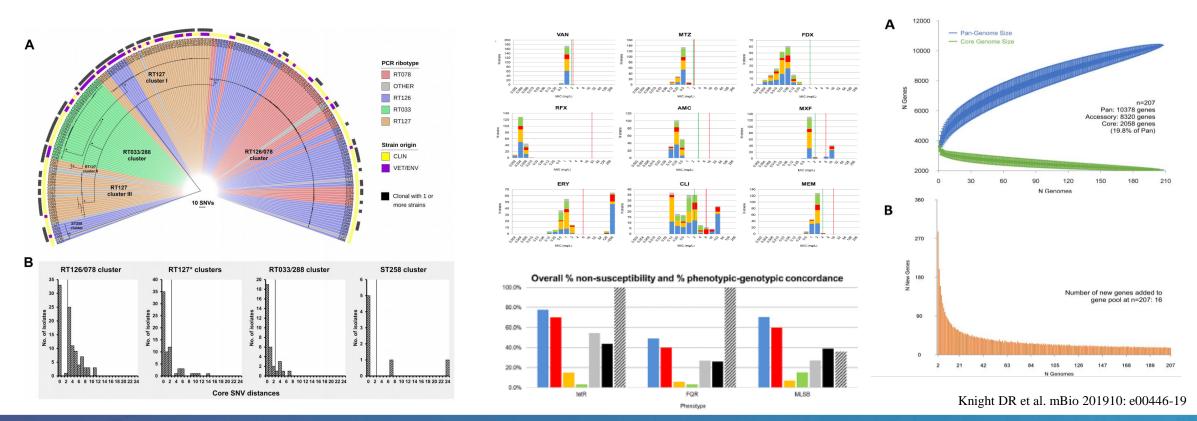
★ ST35 and ST2 widespread presence

• AMR profiles varied in different regions (All susceptible to vancomycin and metronidazole) In New York, Sydney and Perth, higher fusidic acid resistance, but lower moxifloxacin, tetracycline, and erythromycin resistance Lower gatifloxacin resistance in Sydney and Perth

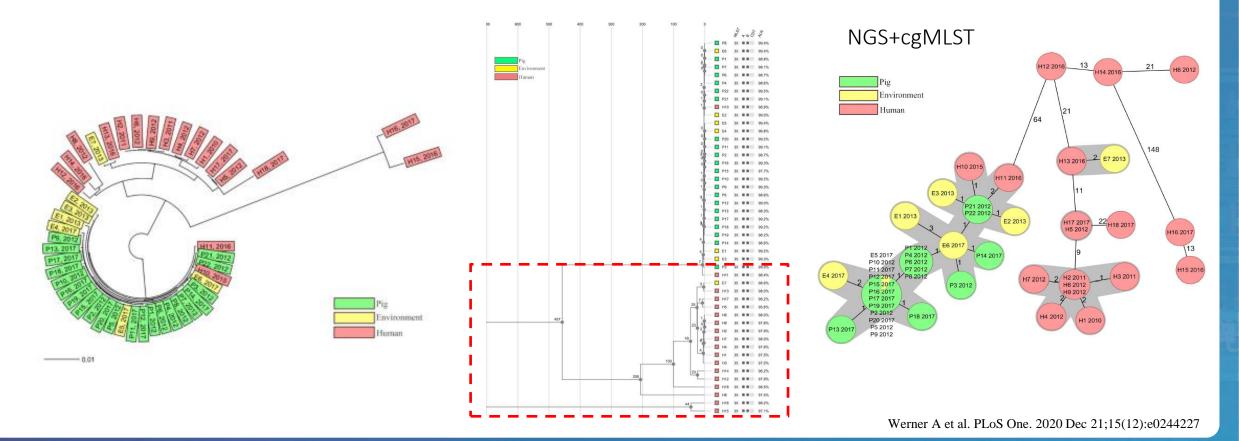



C. difficile in animals, food, and environment

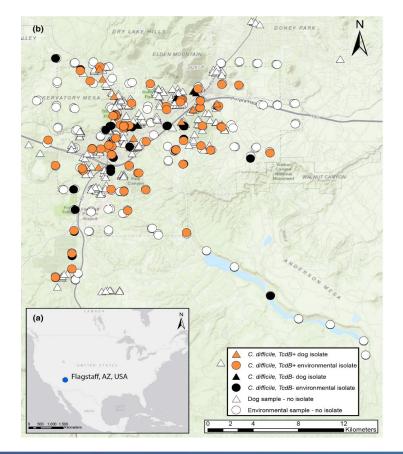
- Food animals, retail food, and the environment are important reservoirs of *C. difficile*.
- This further demonstrates the relevance of *C. difficile* to the One Health concept.

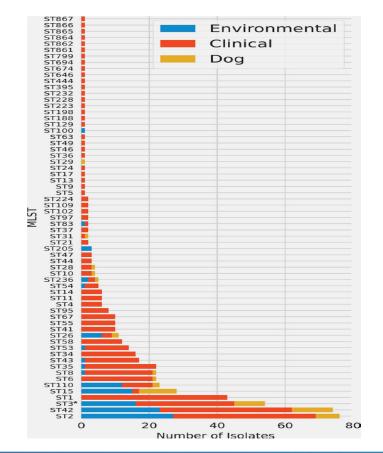

Lim SC, et al. Clostridium difficile and One Health. Clin Microbiol Infect. 2020;26(7):857-63.

- It is the first time to use whole genome SNP typing to study the relevance of *C. difficile* isolates.
- The 65 *C. difficile* RT078 isolates were sequenced and analyzed by core genome SNPs.
- Clonal transmission of *C. difficile* RT078 has been found from pigs to farmers in Netherlands.



- The 200 ST11 and 7 ST258 isolates from human and animal/environmental source worldwide were sequenced.
- Antibiotic resistance geno- and phenotypes varied across host species, geographic regions in *C. difficile* ST11.
- The core genome accounted for just 19.8% of the pan-genome in *C. difficile* ST11.
- This study provided novel insights into genetic relationship of ST11, a lineage of global One Health importance.




• WGS was performed on 47 *C. difficile* RT046 isolates from pigs, environment and human cases of CDI in Sweden.

- Genetic relationship among them was analyzed by SNPs and core genome MLST.
- Whole genome sequencing of *C. difficile* PCR ribotype 046 suggests transmission between pigs and humans.

- WGS was performed on 562 *C. difficile* isolates from clinical, environmental and dog in Flagstaff, AZ, in USA.
- Eight STs were found across all three reservoirs, nine STs were shared across clinical and environmental reservoirs.
- This study provides a One Health framework for comprehensive surveillance of *C. difficile* in a single community.

C. difficile in animals in China

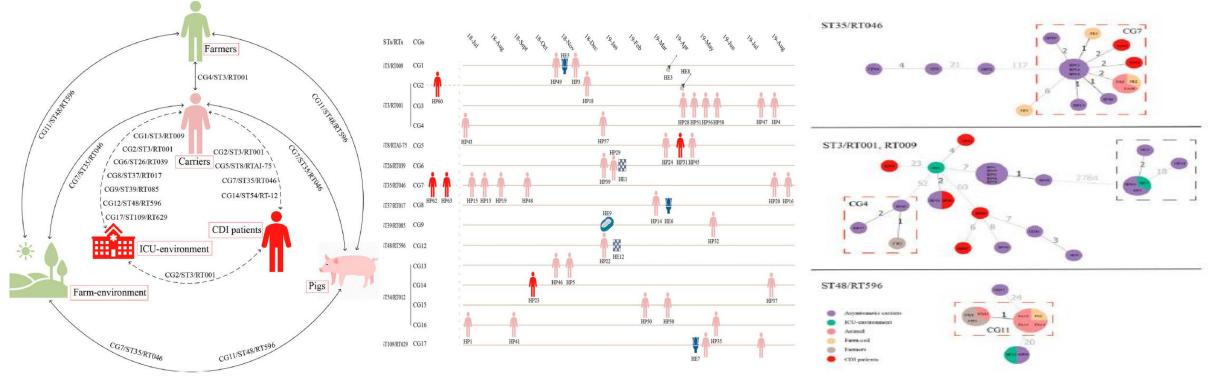
- There were just two studies focusing on *C. difficile* from animals in China.
- ST11/RT078 from pigs was firstly reported in 2019 in China.
- ST35/RT046 from pigs was also reported with the gyrA mutation in China.

ST11 from pigs in China

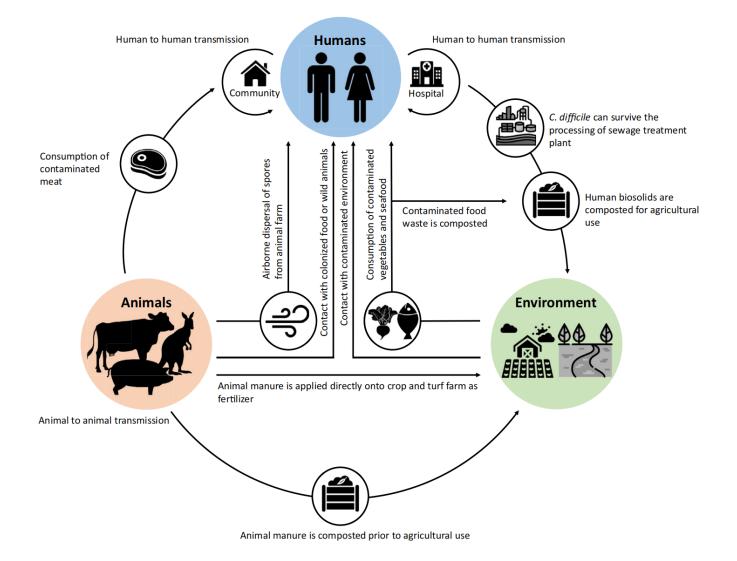
3 Toxin 1 profile	Total No. of Strains			no acid itutions	ST≠		Animal source	Inn	-	Beijing Tiai	Liaoning			
1		Quadruple Drug Resistance	Quintuple Drug Resistance	Sextuple Drug Resistance	GyrA	GyrB	S		TIFIC	gxia	^{\$} hanxi RE	PS	RTS	
A ⁻ , B ⁻ ,	5	CIP/CXT/TET/ CTX	CIP/CXT/TET/CTX/ ERY	CIP/CXT/TET/CTX/ERY/ MXF	Thr87-Ile	Ser366-Ala	1	OPEN The incidence and drug resista of <i>Clostridium difficile</i> infectio in Mainland China: a systemat						
BN	1			CIP/CXT/TET/CTX/ERY/ MXF			2 Published	edi 20 October 2016 1 29 November 2016 Molecular epidemiolog	w and n	neta	-ana • Xie ¹ , Peny	lysis _{fei Sun} , ch	engcheng Liu ¹ ,	
$A^{-}, B^{+},$		CXT/CLI/CTX/		CIP/CXT/TET/CTX/ERY/			4 ST-1	of C. difficile (95% CI) (· •	Р	Model	n/N 0/407	References	
м, b ,		ERY		CLI			ST-2	0.086(0.05-0.118)	1.41	0.494	- FEM	26/288	19, 23, 24, 27, 82, 87	
	7						ST-3	0.181(0.083-0.278)	8.36	0.039	REM	67/295	24, 38, 78, 92	
	7	CIP/CXT/TET/					2 ST-11	0	_	-	-	0/280	24, 27, 82, 87	
		CTX					ST-26		0.5	0.479	FEM	8/62	24, 78	
	4		CIP/CXT/TET/CTX/			Ser366-Ala	1 ST-35	0.136(0.063-0.210)	16.00	0.003	REM	64/455	36, 38, 78, 87, 92	
••	-		MXF				ST-37	0.172(0.122-0.221)	43.77	0	REM	152/913	19, 24, 36–38, 42, 77–78, 82, 87, 92–94	
$re_{A^+, B^+,}$	4				Th: 02 He		2 ST-39	0.159(0.068-0.250)	0.17	0.68	FEM	10/62	24, 78	
СА, В,	4	CIP/CXT/TET/ CTX			Thr82-Ile		3 ST-54	0.167(0.098-0.237)	50.99	0	REM	146/711	24, 36, 38, 42, 77–78, 82, 87, 93	
e	9	CIP/CXT/TET/ CTX	CIP/CXT/TET/CTX/ IPM	CIP/CXT/TET/CTX/IPM/ ERY	Thr82-Ile		35	GZ3	Pig)	,			
Wer A ⁺ ,B ⁺ , Yua CDT ⁺	14	CIP/CXT/TET/ CTX	CIP/CXT/TET/CTX/ IPM			Ser366-Val Ser416-Ala	11	GZ2 (RT078)	Pig	0%)				

Heilongjiang

C. difficile in animals in China


- ST11 was the predominant genotype in animals in China.
- The 15 isolates resistant to ciprofloxacin.
- All isolates were susceptible to tetracycline.

Source	NO.	STs	s RTs	Toxin				No. of resistant isolates / Clinical breakpoints										
				tcdA	tcdB	cdtA	cdtB	MXF	CLI	TET	ERY	LVX	CIP	CHL	MEM	VAN	MTZ	RIF
								≥8	≥8	≥16	≥8	≥8	≥8	≥32	≥16	≥4	≥32	≥4
SN	1	11	ICDC028 (RT078)	+	+	+	+	0	0	0	1	0	1	0	0	0	0	0
SN	21	11	ICDC035 (RT126)	+	+	+	+	0	14	0	21	0	2	0	0	0	0	0
SN	7	11	ICDC050	+	+	+	+	0	4	0	7	0	1	0	0	0	0	0
SN	6	11	ICDC052	+	+	+	+	0	1	0	6	0	2	0	0	0	0	0
N	4	11	ICDC035 (RT126)	+	+	+	+	0	3	0	4	0	2	0	0	0	0	0
YCVTN	1	11	ICDC028 (RT078)	+	+	+	+	0	0	0	1	0	1	0	1	0	0	0
YCVTN	9	11	ICDC035 (RT126)	+	+	+	+	0	6	0	9	0	3	0	0	0	0	0
YCVTN	1	11	ICDC050	+	+	+	+	0	0	0	1	0	0	0	0	0	0	0
YNY	1	11	ICDC035 (RT126)	+	+	+	+	0	1	0	0	0	0	0	0	0	0	0
ND	1	3	ICDC039 (RT220)	+	+	_	_	0	1	0	1	0	1	1	0	0	0	0
YNY	3	468	ICDC094	+	+	_	_	0	1	0	0	0	2	0	0	0	0	0
Total	55							0	31	0	51	0	15	1	1	0	0	0


The characteristics of C. difficile molecular epidemiology in animals are still unclear in China

C. difficile interspecies transmission in China

- WGS was performed on 98 *C. difficile* isolates from hospitals, environment, animals, soil, and farmers in Zhejiang.
- Three clonal groups (CG4, CG7, and CG11) shared across hospital and farm strains by SNP analysis.
- Interspecies and cross-regional transmission of *C. difficile* happened among different sources.

One Health on *C. difficile* transmission

Take home message

- *C. difficile* is a spore forming obligate anaerobe, leading to not only hospital-acquired infection, but also community-acquired infection.
- Molecular characteristics of CDI epidemiology in China are different from those in other regions.
- Studies on *C. difficile* in animals has demonstrated that this is a zoonotic pathogen, leading to interspecies clonal transmission.
- Molecular characteristics of *C. difficile* in animals in China should be further studied in the futre.
- It is essential that One Health perspective on CDI needs multi-disciplinary, multi-field cooperation.
- More multi-center prospective or retrospective studies on *C. difficile* from different sources should be performed in order to better understand CDI

.

and conduct control and prevention of CDI in the future.

Thank you for your attention