

101 OF MULTI DRUG RESISTANT ORGANISMS IN PRIVATE HOSPITALS

Dr. Teresa Wang

CASE SHARING

M/84

Carcinoma of L bronchus with L lower lobectomy done at a public hospital in 2021 with good recovery

BPH with history of recurrent UTI, last episode in July 2022

Admitted to public hospital in November 2022 for decreased GC

Imaging showed staghorn stone at R renal calyx with R ureteric stone leading to obstructive uropathy and progressive deterioration in renal function with creatinine up to 600+

PSEUDOMONAS AERUGINOSA

CSU and intra-op urine showed numerous WBC with significant count of *Pseudomonas aeruginosa* cultured

Blood culture grew the same organism with same antibiogram

No improvement of RFT after insertion of double-J stent to R ureter, not for RRT at public hospital

DAMA to private hospital in December 2022

IN THE PRIVATE HOSPITAL...

Started haemodialysis (HD) Clearance of bacteraemia Treated as out-patient with post-HD dose of meropenem for 2 weeks

TWO WEEKS AFTER STOPPING MEROPENEM...

Fever again

Blood culture repeatedly grew P. aeruginosa resistant to meropenem

- Piperacillin-tazobactam
- Ceftazidime
- Levofloxacin
- Only sensitive to aminoglycosides

er for solution for enous injection usion "stitute before use the package leaflet

TESTED SOME NEW BIG GUNS

Ceftazidime-avibactam

Ceftolozane-tazobactam

EMERGING RESISTANCE

Started ceftolozane-tazobactam (C/Z)

Persistent fever with cloudy urine

Blood culture grew P. aeruginosa susceptibility to C/Z

Urine culture grew P. aeruginosa resistant to C/Z

Switched to ceftazidime-avibactam

WHY IS IT SO DIFFICULT?

- 1. Niche for bacteria forming biofilm
- 2. Haemodialysis unpredictable drug level
- 3. Old age
- Multiple underlying diseases

Antibiogram data from private hospitals in Hong Kong: 6-year retrospective study

Leo Lui *, LC Wong, H Chen, Raymond WH Yung; for The Working Group of Collaboration between CHP and Private Hospitals on Safe Use of Antibiotics and Infection Control

ABSTRACT

Introduction: The surveillance of antibiotic resistance is critical for the establishment of effective control strategies. The antibiotic resistance situations in private hospitals in Hong Kong have not been systematically described. The objective of the study was to analyse antibiogram data from private hospitals and describe the temporal trends of non-susceptibility percentages in this setting.

Methods: This retrospective descriptive study used antibiogram data from all private hospitals in Hong Kong that had been collected annually for 6 years (2014-2019). Data on six targeted bacteria and their corresponding multidrug-resistant organisms were included.

to 9% and 71% to 79%, respectively. These values generally were comparable with findings from public hospitals and Residential Care Homes for the Elderly in Hong Kong. However, the prevalences of carbapenem-resistant Enterobacteriaceae, which are increasing in Hong Kong and other nations, were also increasing in our dataset despite their currently low values (<1% for *Escherichia coli* and <2% for *Klebsiella* species).

Conclusion: The antibiotic resistance landscape among private hospitals in Hong Kong is satisfactory overall; there remains a need for surveillance, antibiotic stewardship, and other infection control measures.

HOW BAD IS ANTIBIOTIC RESISTANCE IN PRIVATE HOSPITALS?

HKMJ 2022;28:140-51

	ln- patients								Out- patients							
	2014	2015	2016	2017	2018	2019	P value	Public hospital s	2014	2015	2016	2017	0218	2019	P value	DH
MRSA	22%	20%	19%	21%	19%	21%	0.2103	43.1%	18%	20%	16%	18%	19%	16%	0.0866	26%
ESBL E. coli	28%	28%	27%	26%	27%	25%	0.0012	26%	20%	20%	18%	18%	21%	20%	0.6201	17- 18.6%
CR E. coli	0.2%	0.2%	0.1%	0.4%	0.7%	0.6%	<0.001		0.1%	0.0%	0.1%	0.4%	0.1%	0.3%	0.0158	
ESBL Klebsiell a	17%	14%	13%	16%	15%	14%	0.2815	19- 22%	14%	15%	16%	18%	13%	13%	0.6321	9.8%
CR Klebsiell a	0.2%	0.7%	0.6%	1.0%	1.3%	0.9%	0.005	0.2- 0.4%	0.3%	0.7%	0.4%	0.4%	0.4%	0.3%	0.6321	
MRPA	0.3%	0.0%	0.1%	0.0%	0.1%	0.2%	0.6367	0.02- 0.06%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	-	
MDRA	7.8%	5.2%	2.9%	2.2%	2.7%	3.5%	0.0006	24-9%	4.5%	0.0%	2.0%	0.0%	0.0%	0.0%	0.0311	

Responding to Outbreaks of Antimicrobial-resistant Pathogens in Health-care Facilities: Guidance for the Western Pacific Region

4. AMR PREPAREDNESS AND PREVENTION

HCFs can review their IPC programmes to focus on areas that could be improved to reduce the risk of AMR pathogen outbreaks

6 DOMAINS OF KEY COMPONENTS OF PREPAREDNESS FOR AMR IN HCFS

Establish infection control committee (ICC) and infection control team (ICT)

- ICC composition...

Evidence-based infection control guidelines

Infection control education and training

HAI surveillance

- CDC NHSN definitions
- Absolute numbers and rates
- Trend monitoring

Audit and feedback of infection control practices

Hand hygiene

Environment, materials and equipment for infection control

- UV disinfection devices

Workload, staffing and bed occupancy

Provision of accurate AMR surveillance data by Microbiology lab

- Cascade reporting of antimicrobial agents
- Report clinically significant pathogens only

M100

Performance Standards for Antimicrobial Susceptibility Testing

This document includes updated tables for the Clinical and Laboratory Standards Institute antimicrobial susceptibility testing standards M02, M07, and M11.

A CLSI supplement for global application

ROLE OF MICROBIOLOGY LAB

nonimon: Maginal discharge	appriatic (Premature runture of membrane)	Reported Time: 03-Feb-2023 20:00
pecimen. Vaginai urscharge	Microbiology	
	microbiology	
Smear, Gram stain		
Result · Epithelial cells:	1+; WBC : 3+; Gram positive cocci: 2+; 6	Gram negative rods: 1+
	Test Besterial	
C line and Consisterate		
Culture and Sensitivity	Test, Bacteriai	
Culture and Sensitivity Result : Growth of (1)	Enterococcus faecalis	
Culture and Sensitivity Result : Growth of (1)	Enterococcus faecalis (1)	m
Culture and Sensitivity Result : Growth of (1) Ceftriaxone	Enterococcus faecalis (1) R (03 Feb 2023)	
Culture and Sensitivity Result : Growth of (1) Ceftriaxone Ampicillin	Enterococcus faecalis (1) R (03 Feb 2023) S	
Culture and Sensitivity Result : Growth of (1) Ceftriaxone Ampicillin Ciprofloxacin	Enterococcus faecalis (1) R (03 Feb 2023) S S S	
Culture and Sensitivity Result : Growth of (1) Ceftriaxone Ampicillin Ciprofloxacin Levofloxacin	Enterococcus faecalis (1) R (03 Feb 2023) S S S S S	
Culture and Sensitivity Result : Growth of (1) Ceftriaxone Ampicillin Ciprofloxacin Levofloxacin Augmentin	Enterococcus faecalis (1) R (03 Feb 2023) S S S S S (03 Feb 2023) S S S (03 Feb 2023)	**
Culture and Sensitivity Result : Growth of (1) Ceftriaxone Ampicillin Ciprofloxacin Levofloxacin Augmentin Linezolid	Enterococcus faecalis (1) R (03 Feb 2023) S S S S S (03 Feb 2023) S S S S S S S S S S S S S S S S S S S	

KEY COMPONENT 2: IPC/WASH PRECAUTIONS

Do not wear the same gown and gloves for the care of more than one person.

Use dedicated or disposable equipment. Clean and disinfect reusable equipment before use on another person.

Table 11. Standard and transmission-based precautions

Standard precautions Use for ALL patients at ALL times	Examples of transmission-based precautions (TBPs) Use standard precautions, PLUS			
 Hand hygiene Appropriate use of PPE Safe use and disposal of sharps Routine environmental 	Contact transmission <i>e.g. MRSA, CPE, VRE</i>	Gloves and fluid-resistant gown/apron Single room if high-risk for transmission, e.g. exudative wound for MRSA		
 cleaning Reprocessing of reusable medical equipment and instruments Respiratory hygiene and 	Droplet transmission e.g. influenza	Medical mask Single room if possible		
cough etiquette • Aseptic technique, including safe injecting practices • Waste management • Appropriate handling of linen	Airborne transmission e.g. tuberculosis	Respirator (N95, FFP2 or equivalent) Single, well-ventilated room where possible (negative- pressure ventilation, if available)		

COSTS

BACK TO MY PATIENT

Prolonged hospital stay

- Treatment of R renal and ureteric stone (JJ stent insertion + ESWL)
- Recurrent L pleural effusion (pleural tapping showed atypical cells)
- Aspiration pneumonia with FEES showing impaired swallowing
 - PEG insertion
- Sputum (January 2023): NDM-positive Klebsiella pneumoniae
- Contact precautions
 - Single room
 - PPE
- Explanation to relatives

KEY COMPONENT 3: ANTIMICROBIAL STEWARDSHIP

Memo to prescribing doctors to indicate reason of prescription

Phone calls (from pharmacists) to doctors to remind on the choice of antibiotics

?Who to judge

?Patients paying at their own cost

ANNEX 11. CORE ELEMENTS OF AN ANTIMICROBIAL STEWARDSHIP PROGRAMME

Leadership commitment

- AMS identified as a priority area by management
- AMS leadership committee in place with clear terms of reference
 AMS action plan and read to answer appropriate antimicrobial use
- AMS action plan endorsed to ensure appropriate antimicrobial use
 Dedicated and sustainable financial support for the AMS action plan (including
- salary, training and information technology support)

Accountability and responsibilities

- Multidisciplinary AMS team with dedicated AMS champion identified
- Other health professionals identified and involved in AMS activities
- Clearly defined collaboration between the AMS and IPC programmes
- Ensure IT, laboratory and imaging services are accessible
 Ensure the laboratory uses selective reporting of susceptibility results

AMS actions

- AMS team to conduct regular ward rounds and other point-of-care interventions
- Produce a formulary with a list of approved antimicrobials (these may be based on national recommendations or the WHO EML)
- Produce a formulary with a list of restricted antimicrobials (these may be based on the WHO AWaRe classification system)
- Produce up-to-date standard treatment guidelines

 $\cap \mathcal{C}$

: 1

ΧĒ

Education and training

- Initial and regular training in optimal antimicrobial use for healthcare professionals
- Initial and regular training of the AMS team in infection management

Monitoring and surveillance

- Monitoring quantity of antimicrobial use (purchased, prescribed or dispensed)
- Auditing the compliance of AMS interventions
- Auditing the appropriateness of antimicrobial use
- Monitoring of susceptibility and resistance rates for key indicator bacteria (in alignment with national and/or international surveillance systems e.g. GLASS)
- Producing a local antibiogram

Reporting and feedback

- Evaluation and sharing of quantitative data on antimicrobial use with prescribers, along with specific educational activities
- Evaluation and sharing of qualitative data on appropriateness of antimicrobial use with prescribers, along with specific educational activities
 - Evaluation and sharing of resistance rates with prescribers

R

KEY COMPONENT 4: ENVIRONMENTAL CLEANING AND MANAGEMENT

Training of staff

Appropriate design/engineering/construction

Adequate supply of disinfectant(s)

Policies and procedures and protocol

Monitor, feedback and audit

Bacteria	Abbreviation	Antibiotic Resistance			
Staphylococcus aureus	MRSA	Methicillin-resistant			
Enterococcus species	VRE	Vancomycin-resistant			
Enterobacteriaceae (e.g., <i>E. coli/Klebsiella</i>)	ESBL	Extended-spectrum beta-lactamase produces resistance to penicillin/ cephalosporins			
Enterobacteriaceae (e.g. <i>E. coli/Klebsiella</i>)	CRE	Carbapenem-resistance			
Pseudomonas aeruginosa / Acinetobacter species	MDR	Resistance to three or more antibiotic classes			

KEY COMPONENT 5: SURVEILLANCE FOR AMR

Routine collection and analysis of resistance patterns and /or incidence of pathogens of concern • MRSA

• CPE

VRE

Defined patient populations for screening • Whole hospital • ICU / SCU • HD

Patients with history

Reporting of unusual events*

UNUSUAL EVENTS

Sudden increase in MDROs Clustering

KEY COMPONENT 5: SURVEILLANCE FOR AMR

Reporting in ICC meeting Nursing officers meeting Departmental meetings

KEY COMPONENT 6: EDUCATION

Local IC practices

IPC precautions

Commencement of work + regular refresher courses

KEY COMPONENT 6: EDUCATION

Training

Find free, trusted eLearning courses on key topics relating to AMR:

Hong Kong Training Portal on Infection Control and Infectious Disease

About Us Infection Control 🗸 Infectious Disease 🗸 ICB Corner 🗸 IC Programs 🗸 Training Activities Photo

Home / Training Activites / Training Detail

Seminar on Infectious Disease and Infection Control Management error of Patients with Multi-Drug Resistant Organisms

Торіс	Seminar on Infectious Disease and Infection Control Management of Patients with Multi-Drug Resistant Organisms
Course Type	Web-based: Zoom Webinar
Content	 Explore the impact of COVID-19 pandemic on Multi-drug Resistant Organisms (MDROs) Update knowledge on managing MDROs and preventing outbreaks of MDROs Poster
Date	17 February 2023
Venue	Zoom
Organizer	Co-organized by Infectious Disease Control Training Centre, Hospital Authority (HA IDCTC)/ Infection Control Branch (ICB), Centre for Health Protection (CHP) and Chief Infection Control Officer's Office, HA
Target Group	- Medical staff of related specialties including Infectious Disease, Clinical Microbiology, Intensive Care Unit, Pathology, Paediatrics, Medicine, A&E, Public Health, Community Medicine and Family Medicine and other physicians who are interested in the subjects

