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Epidemiology is the basic science of public health
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Where and when does the disease of interest Epidemiology
appear?

What is the burden of the disease in the
population?

Do people who have the disease have any
common characteristics that are not present
among people who do not have the disease?




Anatomy of an epidemic
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Infectious disease epidemiology

Many epidemiologic studies of infectious diseases are observational

3,500

Impossible to set up precisely the same set of conditions
Releasing pathogens is unethical and prohibited

Robust disease surveillance and meticulous medical records are
essential for infectious disease studies
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Natural history

Incubation period: Time from infection to symptoms onset
Latent period: Time from infection to infectiousness onset
Infectious period: Time during which the infected person is infectiousness

Symptoms are readily observable or recallable \
The time of infection is most often Symptoms Recovery
not directly observable, but might P Infection onset or death

be inferred from exposure history ' —

Not infectious
before symptoms

Diseases with higher pre-symptomatic /\

infectiousness are generally more difficult to —

control (with symptoms-based interventions,
e.g. isolation and contact tracing) <

Latent period ! Infectious period
|

Substantial infectiousness

“Factors that make an infectious disease outbreak before symptoms

controllable” \
Fraser et al PNAS 2004 B

Latent period Infectious period




Incubation period

The Incubation Period Distribution of Coronavirus
Disease 2019: A Systematic Review and Meta-analysis

Y. Wang,' Caitriona Murphy,' Amy Yeung,' Sheikh Taslim Ali,'? Peng Wu,'*" and Benjamin J. Cowling?

"World Health Organization Collaberating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hang Kong, Hong Kong
Special Administrative Region, China; and “Laboratory of Data Discavery for Health Limited, Hong Kong Sciance Park, New Territories, Hang Kong Special Administrative Region, China

The Epidemiology of Severe Acute Respiratory Syndrome in the 2003
Hong Kong Epidemic: An Analysis of All 1755 Patients

Gabriel M. Leung, MD, MPH; Anthony J. Hedley, MD, FRCP; Lal-Ming Ho, PhD; Patsy Chau, M5tat; Irene O.L. Wong, MPhil, MMedSc;
Thuan Q. Thach, PhD; Azra C. Ghanl, PhD; Christl A. Donnelly, ScD; Christophe Fraser, PhD; Steven Riley, DPhIl; Nell M. Ferguson, DPhil;
Roy M. Anderson, PhD; Thomas Tsang, MBBS, FHKAM; Pak-Yin Leung, MBBS, FFPH; Vivian Wong, MBBS, FHKAM; Jane C.K. Chan, MD,
FHKAM; Eva Tsul, MStat; Su-Vul Lo, MBChB, FFPH; and Tal-Hing Lam, MD, FFPH

Hualei Xin,' Jessi

Incubation period is an important parameter to inform quarantine period and to study transmission dynamics of infectious diseases.
We conducted a systemalic review and meta-analysis on published estimates of the incubation period distribution of coronavirus
disease 2019, and showed that the pooled median of the point estimates of the mean, median and 95th percentile for incubation pe-
riod are 6.3 days (range, 1.8-11.9 days), 5.4 days (range, 2.0-17.9 days), and 13.1 days (range, 3.2-17.8 days), respectively. Estimates
of the mean and 95th percentile of the incubation period distribution were considerably shorter before the epidemic peak in China

Background: As yet, no one has written a comprehensive epi- infected individuals was 5:4. Health care workers accounted for
demiologic account of a severe acute respiratory syndrome (SARS) 23.1% of all reported cases. The estimated mean incubation pe-
outbreak from an affected country. riod was 4.6 days (95% CI 3.8 to 5.8 days). Mean time from

onset to hi varied b 2 and 8 days,
decreasing over the course of the epidemic. Mean time from onset

compared to after the peak, and variation was also noticed for different choices of methodological approach in estimation. Our find-

ings implied that corrections may be needed before directly applying estimates of incubation period into control of or further studies Objective: To de a comprehensive epidemiologic account

on emerging infectious diseases.
Keywords. COVID-19; SARS-CoV-2; incubation period; systematic review; meta-analysis.

SARS-CoV-2: Xin et al Clin Infect Dis. 2021

Comparative epidemiology of human infections with avian
influenza A H7N9 and H5N1 viruses in China:
a population-based study of laboratory-confirmed cases

Benjamin | Cowling®, Lianmei Jin*, Eric H ¥ Law, Qiaohong Liao, Peng Wu, Hui Jiang, Tim K Tsang, Jiandong Zheng, Vicky | Fang, Zhaorui Chang,
Michael ¥ Ni, Qian Zhang, Dennis K M Ip, lianxing Yu, Yu Li, Liping Wang, Wenxiao Tu, Ling Meng, Joseph T Wo, Huiming Luo, Qun L
Yuelong Shu, Zhongjie Li, Zijian Feng, Weizhong Yang, Yu Wang, Gabriel M Leung, Hongjie Yu

Summary

Background The novel infl A H7N9 virus d recently in mainland China, whereas the influenza A H5N1
virus has infected people in China since 2003. Both infections are thought to be mainly zoonotic. We aimed to
compare the epidemiological characteristics of the complete series of laboratory-confirmed cases of both viruses in
mainland China so far.

Methods An integrated database was constructed with information about demographic, epidemiological, and clinical
variables of laboratory-confirmed cases of H7N9 (130 patients) and H5N1 (43 patients) that were reported to the
Chinese Centre for Disease Control and vaenlmn until May 24, 2013. We described disease occurrence by age, sex,
and hy, and esti: d key epid logical variables. We used sumvai analysis techniques to estimate the
following distributions: infection to onset, onset to admission, onset to | y confirmation, admission to death,
and admission to discharge.

Findings The median age of the 130 individuals with confirmed infection with H7N9 was 62 years and of the
43 with H5N1 was 26 years. In urban areas, 74% of cases of both viruses were in men, whereas in rural areas the
proportions of the viruses in men were 62% for H7N9 and 33% for H5N1. 75% of patients infected with H7N9 and
71% of those with H5N1 reported recent exposure to poultry. The mean incubation period of H7N9 was 31 days and
of H5N1was 3.3 days. On average, 21 contacts were traced for each case of H7N9 in urban areas and 18 in rural areas,
compared with 90 and 63 for H5N1. The fatality risk on admission to hospital was 36 (95% CI 26-45) for H7N9 and
70% (56-83%) for HSNL

Interpretation The sex ratios in urban compared with rural cases are consistent with exposure to poultry driving the
risk of infection—a higher risk in men was only recorded in urban areas but not in rural areas, and the increased risk
for men was of a similar magnitude for HYN9 and H5N1. However, the difference in susceptibility to serious illness
with the two different viruses remains unexplained, since most cases of H7N9 were in older adults whereas most
cases of H5N1 were in younger people. A limitation of our study is that we compared laboratory-confirmed cases of
H7N9 and H5N1 infection, and some infections might not have been ascertained.

H7N9: Cowling et al Lancet 2004

of a SARS outbreak from an affected territory.
Design: Epidemiologic analysis.
Setting: The 2003 Hong Kong SARS outbreak.

Participants: All 1755 cases and 302 deaths.

4, h h inf

Measurements: i istics;

clusters by time, occupation, setting, and workplace; and geospa-
tial relationships were determined. The mean and variance in the
time from infection to onset (incubation period) were estimated in
a small group of patients with known exposure. The mean and
variance in time from onset to admission, from admission to
discharge, or from admission to death were calculated. Logistic
regression was used to identify important predictors of case fa-
tality.

Results: 49.3% of patients were infected in clinics, hospitals, or
elderly or nursing homes, and the Amoy Gardens cluster ac-
counted for 18.8% of cases. The ratio of women to men among

to death was 23.7 days (Cl, 22.0 to 25.3 days), and mean time
from onset to discharge was 26.5 days (Cl, 25.8 to 27.2 days).
Increasing age, male sex, atypical presenting symptoms, presence
of comorbid conditions, and high lactate dehydrogenase level on
admission were associated with a greater risk for death.

Limitations: Estimates of the incubation period relied on statis-
tical assumptions because few patients had known exposure
times. Tempoml changes in case management as the epidemic
ion, and several poten-
lially important factors that could not be thoroughly analyzed
because of the limited sample size complicate interpretation of
factors related to case fatality.

Conclusions: This analysis of the complete data on the 2003
SARS epidemic in Hong Kong has revealed key epidemiologic
features of the epidemic as it evolved.

Ann Intern Med. 2004;141:662-673 W annals.org
For author affillations, see end of text.

SARS: Leung et al Ann Intern Med 2004



Incubation period

The incubation period can vary substantially among individuals:

* Route and dose of transmission
* Host genetics, age, immunity

* Intervention (e.g. pharmacologic
prophylaxis and treatment)

Association between Severity of MERS-CoV
Infection and Incubation Period

Victor Virlogeux, Minah Park, Joseph T. Wu,' data, we assumed that their incubation time was 0-21 days
Benjamin J. Cowling' because 21 days was the longest incubation period report-
ed (9,10). Data for patients is provided in online Techni-

We analyzed data for 170 patients in South Koreawhohad .51 Appendix 1 (http:/wwwnc.cde.gov/EID/article/22/3/
laboratory-confirmed infection with Middle East respira- 15-1437-Techapp1 xlsx)

tory syndrome coronavirus. A longer incubation period was gt ; : ; i piE 0
associated with a reduction in the risk for death (adjusted To estimate incubation period distribution, we fitted a
odds ratio/1-day increase in incubation period 0.83, 95%  $amma distribution that enabled interval censoring (6) by
credibility interval 0.68—1.03). using Markov Chain Monte Carlo methods in a Bayesian

framework (online Technical Appendix 2, http://wwwne.

Viriogeux et al Emerge Infect Dis 2016



Incubation period

The incubation period can vary substantially among individuals:

« Route and dose of transmission You.nger patients have longer incubation
period for AIDS
* Host genetics, age, immunity 0 087 Age:
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Incubation period

The incubation period can vary substantially among individuals:

Route and dose of transmission
Host genetics, age, immunity

Intervention (e.g. pharmacologic
prophylaxis and treatment)

Antiretroviral therapies lengthen the
incubation period of AIDS
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Probability density

Incubation period distribution

Typically right-skewed, i.e. has a long right tail

Often looks like a lognormal distribution (the log of incubation period
is normally distributed)
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Incubation periods of acute respiratory viral infections
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Incubation periods for COVID-19

Li[1]
Ren [2] 1

Linton

Bi

Wang [13] 1
Zhang [15] -
Ma [28] -
Viego [30] <
Song H 4

Sanche

Pan [12] -
Tindale [20]
Deng [26] -
Jiang [6] 4
Backer [8] 4
Leung [11] 1
Qin [14] 1
Xiao [19] -
Dai [21] 1
Liu [5] 1
Kong [16] -
Sun [17] 1
Xia [18] 1
Xiao [22] -
Jia [23] 1
Wang [24] -
You [25] 4
Tan [27] -
Liu [29] -
Patrikar [31] 4

Author, Year

Wa [g ]
o

A

B S
+
——

.
i
-
-

Log-normal
Gamma
Weibull

Normal

10 15
Incubation period (mean, days)

Incubation period (mean, days)

12.5- B

=
o
o

o
o

o
o

2.51

Ga nl'lma Weibu Il Nor'mal

Distribution

T
Log—-normal

Xin et al Clinic Inf Dis 2021



Why do we want to know about incubation period?

For clinical management:

— To predict disease severity, e.g. shorter incubation time is associated
with more severe outcome
65 tetanus ICU cases Risk of progression to death after AIDS diagnosis

1961-1977. Leeds. UK was reduced after widespread use of hyperactive
' ' antiretroviral therapies (HAART)
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No. of cases

Why do we want to know about incubation period?

For public health control:
 To identify the origin of common-source outbreaks

Weekly number of hepatitis A cases in Pennsylvania, 2000-2011

200 -
180 1
160 - <« Hepatitis A epidemic in 2003
140 -
120 -
100 -
80
60 -
40 -
20 -

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011



Why do we want to know about incubation period?

For public health control:
 To identify the origin of common-source outbreaks

An epidemic of hepatitis A in Pennsylvania in 2003
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Why do we want to know about incubation period?

For public health control:

— To estimate the duration necessary for quarantining suspected or
contacts of cases to ensure that they are not infected upon release

— Quarantine means isolating suspected cases and contacts from the
community to prevent disease transmission in case they have been
infected but do not yet have the clinical or virologic evidence of so.

a.% of infections have incubation period shorter than {,
0.25

0.2

Set a high enough so that upon
released from quarantine, the
individual is uninfected with high
probability, e.g. & =95 or 99
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Why do we want to know about incubation period?

For public health surveillance:
* Backcalculate incidence of infection from incidence of clinical cases

An example: HIV

The incubation period of AIDS had a median of around 9 years and could
range from 3 to more than 12 years, so the observed AIDS cases represented

only a small proportion of the total number of HIV infections in the
population.

“HI V infection rates are related to AIDS incidence through the incubation period
distribution. The fundamental convolution equation is given by

at) = f 1(6)F(t — sls)ds
0

where a(t) is the cumulative number of cases of AIDS diagnosed by year t, I(s) is

the infection rate in year s, and F(t|s) is the incubation period distribution among
individuals infected in year s.”

Brookmeyer Science 1991



No. of HIV infections

From HIV infection to AIDS diagnoses
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Morbidity and mortality observed in the
clinical settings often constitute only a small
proportion of all infections in the population ‘i

Clinical iceberg model

infection carriers are common

Asymptomatic or subclinical ~ € r - '—
for many infectious diseases

H5N1 avian flu
Almost 100%

symptomatic

"Approx1mate1 95% ersons infected with
polio will have no sy 5. About 4 8% of
infected persons ha or symptoms, such
as fever, fatigue, nausea, headache, flu like
symptoms, stiffness in the neck and back,
and pain in the limbs, which often resolve
completely. Fewer than 1% of polio cases
result in permanent paralysis of the [imbs
(usually the legs). Of those paralyzed, 5 10%
die when the paralysis strikes the respiratory
muscles. The death rate increases with
Increasing age.

US CDC



Measures for transmissibility

 Infection attack rate

— The proportion of a population (subgroup) infected
over the course of an epidemic

* Secondary (infection) attack rate

— The proportion of individuals infected in a semi-closed
setting (e.g. households, airplanes, military barracks) in
an outbreak caused by an index case (ideally accounting
for pre-existing immunity)

* Basicreproductive number

— The average number of secondary cases generated by
an index case when an epidemic begins in a completely
susceptible population



Disease transmission

Index case - the first case identified
Primary case - the case bringing infection to a population
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Disease transmission

Index case - the first case identified
Primary case - the case bringing infection to a population
Secondary case - infected by a primary case
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Disease transmission

Index case - the first case identified

Primary case - the case bringing infection to a population
Secondary case - infected by a primary case

Tertiary case - infected by a secondary case
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‘ Clinical

Sub-clinical



Secondary attack rate

no.of cases

Numerator

SAR =
no.of exposed (susceptibles) ‘
Susceptible
Denominator . Immune
All members Susceptibles only ‘ Clinical
Sub-clinical
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The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Comparative Epidemiology of Pandemic
and Seasonal Influenza A in Households

Benjamin J. Cowling, Ph.D., Kwok Hung Chan, Ph.D., Vicky . Fang, M.Phil.,
Lincoln L.H. Lau, B.Sc., Hau Chi So, B.N.S., Rita O.P. Fung, B.N.S,
Edward S.K. Ma, M.Phil., Alfred S.K. Kwong, M.B., B.S., Chi-Wai Chan, M.B., B.S.,
Wendy W.S. Tsui, M.B., B.S., Ho-Yin Ngai, M.B., B.S., Daniel W.S. Chu, M.B., B.S.,
Paco W.Y. Lee, M.B., B.S., Ming-Chee Chiu, M.B., B.S., Gabriel M. Leung, M.D.,
and Joseph S.M. Peiris, D.Phil.

0.15

T

0.1

0.05r

Secondary attack rate

Pandemic flu Seasonal flu
HTN1 H1N1 and H3N2

BACKGROUND
There are few data on the comparative epidemiology and virology of the pandemic
2009 influenza A (H1N1) virus and cocirculating seasonal influenza A viruses in com-
munity settings.

METHODS

We recruited 348 index patients with acute respiratory illness from 14 outpatient clin-
ics in Hong Kong in July and August 2009. We then prospectively followed house-
hold members of 99 patients who tested positive for influenza A virus on rapid di-
agnostic testing. We collected nasal and throat swabs from all household members at
three home visits within 7 days for testing by means of quantitative reverse-tran-
scriptase—polymerase-chain-reaction (RT-PCR) assay and viral culture. Using hemag-
glutination-inhibition and viral-neutralization assays, we tested baseline and con-
valescent serum samples from a subgroup of patients for antibody responses to the
pandemic and seasonal influenza A viruses.

RESULTS
Secondary attack rates (as confirmed on RT-PCR assay) among household contacts
of index patients were similar for the pandemic influenza virus (8%; 95% confidence
interval [CI], 3 to 14) and seasonal influenza viruses (9%; 95% CI, 5 to 15). The pat-
terns of viral shedding and the course of illness among index patients were also
similar for the pandemic and seasonal influenza viruses. In a subgroup of patients
for whom baseline and convalescent serum samples were available, 36% of house-
hold contacts who had serologic evidence of pandemic influenza virus infection did
not shed detectable virus or report illness.

CONCLUSIONS
Pandemic 2009 H1N1 virus has characteristics that are broadly similar to those of
seasonal influenza A viruses in terms of rates of viral shedding, clinical illness, and
transmissibility in the household setting.
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Factors Associated With Household Transmission of SARS-CoV-2

An Updated Systematic Review and Meta-analysis

Zachary J. Madewell, PhD; Yang Yang, PhD; Ira M. Longini Jr, PhD; M. Elizabeth Halloran, MD, D5c; Natalie E. Dean, PhD

Abstract

IMPORTANCE A previous systematic review and meta-analysis of household transmission of SARS-
CoV-2 that summarized 54 published studies through October 19, 2020, found an overall secondary
attack rate (SAR) of 16.6% (95% Cl, 14.0%-19.3%). However, the understanding of household
secondary attack rates for SARS-CoV-2 is still evolving, and updated analysis is needed.

OBJECTIVE To use newly published data to further the understanding of SARS-CoV-2 transmission
in the household.

DATA SOURCES PubMed and reference lists of eligible articles were used to search for records
published between October 20, 2020, and June 17, 2021. No restrictions on language, study design,
time, or place of publication were applied. Studies published as preprints were included.

STUDY SELECTION Articles with original data that reported at least 2 of the following factors were
included: number of household contacts with infection, total number of household contacts, and
secondary attack rates among household contacts. Studies that reported household infection
prevalence (which includes index cases), that tested contacts using antibody tests only, and that
included populations overlapping with another included study were excluded. Search terms were
SARS-CoV-2 or COVID-19 with secondary attack rate, household, close contacts, contact transmission,
contact attack rate, or family transmission.

DATA EXTRACTION AND SYNTHESIS Meta-analyses were performed using generalized linear
mixed models to obtain SAR estimates and 95% Cls. The Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) reporting guideline was followed.

MAIN OUTCOMES AND MEASURES Overall household SAR for SARS-CoV-2, SAR by covariates
(contact age, sex, ethnicity, comorbidities, and relationship; index case age, sex, symptom status,
presence of fever, and presence of cough; number of contacts; study location; and variant), and SAR
by index case identification period.

RESULTS A total of 2722 records (2710 records from database searches and 12 records from the
reference lists of eligible articles) published between October 20, 2020, and June 17, 2021, were
identified. Of those, 93 full-text articles reporting household transmission of SARS-CoV-2 were
assessed for eligibility, and 37 studies were included. These 37 new studies were combined with 50
of the 54 studies (published through October 19, 2020) from our previous review (4 studies from
Wuhan, China, were excluded because their study populations overlapped with another recent

study), resulting in a total of 87 studies representing 1249163 household contacts from 30 countries.

The estimated household SAR for all 87 studies was 18.9% (95% Cl, 16.2%-22.0%). Compared with
studies from January to February 2020, the SAR for studies from July 2020 to March 2021 was
higher (13.4% [95% CI, 10.7%-16.7%] vs 31.1% [95% Cl, 22.6%-41.1%], respectively). Results from

Key Points

Question Are early estimates of
household transmission of SARS-CoV-2
indicative of current household
transmission?

Findings In this updated systematic
review and meta-analysis of 87 studies
representing 1249163 household
contacts from 30 countries, the
estimated household secondary attack
rate was 19%. An increase in household
transmission was observed over time,
perhaps owing to improved diagnostic
procedures and tools, longer follow-up,
more contagious variants, and different
study locations.

Meaning Thesefindings suggest that
the household remains an important site
of SARS-CoV-2 transmission, and recent
studies have generated higher
household secondary attack rate
estimates compared with the earliest
reports; more transmissible variants and
vaccines may be associated with
additional changes in the future.

4 supplemental content

Author affiliations and article information are
listed at the end of this article.

Madewell et al JAMA Network Open 2021



Basic concepts for describing transmission

Basic reproductive number, R,

* The average number of secondary cases generated by an index case
when an epidemic begins in a completely susceptible population .

Mean generation time, T,

* The average time it takes an index case to infect other individuals after
he becomes infected.

Epidemic growth rate, r
* The rate at which the number of infections is increasing exponentially

* During the early phase, the epidemic doubling time is ¢, = In2 /r. Why?
During this phase, the epidemic size is growing exponentially at rate r.
This means

2 x current size = current size x exp(rt,)



Basic reproductive number, R,

The average number of secondary cases generated by an
index case in a fully susceptible population:

— Reproductive number, R: Same as R, except that the
population needs not be completely susceptible

* Some time after the epidemic has started, in which
case we denote the reproductive number by R,.

* If the population is partially vaccinated before the
outbreak.

A

15t generation

2"d generation

3rd generation



Basic reproductive number, R,

The average number of secondary cases generated by an
index case in a fully susceptible population.

R, < 1: The epidemic will die out R, > 1: The pathogen can lead to an
without exponential growth exponentially growing epidemic
2r 2
®
o' 1.‘ e 17
0 0
w 157 r
g g 1000
< 104 _ o 5 _ Exponential growth
q:':_’ 10 infected  The epidemic dies out & ool 10 infected
s s thout al th -
5 517 seeds without exponential grow = / seeds
e o
Z 0 =
Time . Time

How to estimate R,?
* Contract tracing and cohort follow-up.
* Fitting mathematical models to epidemic curves.



Timescale of disease transmission

Reproductive number describes the number of secondary cases but
not how long it takes for infections to occur.

Generation time: Time between successive infections.

Serial interval: Time between symptom onset of successive infections.

Symptoms Recovery
Infection onset or death

Symptoms Recovery
Infection onset or death
b
Sérial

interval

Y

Generation
time



Timescale of disease transmission

Shorter generation time or serial interval means that confirmed and
probable cases would need to be identified and removed from the
population sooner in order to prevent them from spreading the disease.

SARS

Serial interval = 8 days 2nd infectee 3 infectee

1%t infectee
[ ]
w Infections are prevented if isolated
>

during this period

Time since infection

Influenza

Serial interval = 3 days _ _
2" infectee 3" infectee

Istinfectee
[
Infections are prevented if

isolated during this period

>

Time since infection



Timescale of disease transmission

Latent period
* The time it takes to become infectious after infection.
* Can be longer or shorter than incubation period.

Infection Symptoms onset Recovery or death

Not infectious before
symptom onset

Isolation upon symptoms onset is VERY effective for
preventing transmission

e.g. SARS

Latent period Infectious period

Substantial infectiousness
before symptom onset

e.g. SARS-CoV-2

Isolation upon symptoms onset is NOT effective for
preventing transmission

Latent period Infectious period



Generation time = 5 days Generation time = 2 days

Generation time = 5 days
Generation time = 2 days
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Time



Generation time = 5 days

No. of infections

Generation time = 2 days
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Generation time = 5 days
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Generation time = 5 days Generation time = 2 days
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Generation time = 5 days
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Generation time = 2 days
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Generation time = 5 days
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Epidemic growth rate depends on R, and T,

Mean generation time T : the average time it takes an index case
to infect other individuals after he becomes infected.

T, = the average of t}, t,, L5, t,

Ry, T, and epidemic growth rate r are interrelated. For a given R,,
a shorter T, means a higher growth rate.

RO = erTg

Probability density
Probability density

Generation time Generation time



Basic reproductive number and mean serial intervals
of some pathogens

Pandemic influenza 1.5-3 2.5
SARS 2-3 8
Measles 12-19 12
Smallpox 4 -7 15
Chickenpox 4-9 14

Heffernan et al Royal Society Interface 2005
Fine Am | Epidemiol 2003



Basic reproductive number of variant of SARS-COV-2
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Infectious disease modeling

* A systematic way of translating assumptions and data regarding
disease transmission into quantitative description of how an
epidemic evolves.

* Just like animal models, infectious disease modeling is a tool for
helping you collect your thoughts about a complex problem to
generate and test hypotheses.

* Some uses of infectious disease modeling:
— Estimating transmission parameters from epidemiologic data

— Estimating effectiveness of interventions from epidemiologic data,
e.g. vaccination or school closure

— Predicting the cost and effectiveness of intervention strategies, e.g.
vaccinating core transmission group vs high-risk group



The simplest epidemic model

* A closed population of size N is partitioned into three compartments of

N«

individuals: “Susceptible”, “Infectious”, and “Recovered” (SIR model).

* Allindividuals are assumed to be identical in terms of their (i)
susceptibility to infection, (ii) infectiousness if infected, and (iii) mixing
behavior associated with disease transmission (the so-called
homogenous mixing assumption).

St +A)=S()— BSEIF)At

number of infections

. between time ¢ and 1+ At
Susceptible
S(0) It+AD) = I()+ BSHIOA —  al(t)At
) a: \—,_/ e —
Force Of number of infections number of recovery
infection The rate of infection between timer and r+Ar  between time ¢ and r+Az
P » PI(t) is proportional to

disease prevalence

Infectious

()

Infectious people recover
o after being infectious
forl/o. on average

Recovered
R(t)

Infectious, I(t)
= = = Susceptible, S(t)

Hallmarks of an epidemic:

1.

2.

The number of infections
increases exponentially
during the early phase of a
growing epidemic

The epidemic curve is
unimodal and peaks when
the susceptible pool has
been sufficiently depleted
(such thatR, < 1)

Epidemiologic parameters:
Ry=B/a, T,=1/a
r=Ry-1)/T;=p-«a



SIR epidemic dynamics
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SIR epidemic dynamics

x10
o 10F
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No. of infections
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100%

Attack rate

No. of susceptibles

50%

0%
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SIR epidemic dynamics
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SIR epidemic dynamics
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SIR epidemic dynamics

x10 Incidence begins to drop
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SIR epidemic dynamics
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SIR epidemic dynamics
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SIR epidemic dynamics
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No. of infections

SIR epidemic dynamics

S(t+At) =S~ BSHI)AL
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Vaccination

* Suppose the vaccine is 100% efficacious.

* Itis notnecessary to vaccinate the whole population to halt
a growing epidemic. Why?
— Vaccinating an individual indirectly reduces the risk of infection of
this individual’s contacts (herd immunity).

@® Infected @ Susceptible @ Vaccinated

Vaccination with

coverage p

R = Ry(1-p)



Herd immunity

Vaccinated(100% directly protected)
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Vaccinated(100% directly protected)
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Critical vaccination coverage

Suppose the vaccine is 100% efficacious.

Critical vaccination coverage, ¢’

— The minimal proportion needed to be vaccinated in order to
prevent an epidemic.

— Also called the herd immunity threshold

In the SIR model, ¢" = 1-1/R,, i.e. vaccinating a proportion p
>1-1/R, of the population is sufficient to prevent an
epidemic. Why?

— After vaccination, the reproductive number is

R=(1-pR, <1l << p>1-1/R,



Recap: The simplest epidemic model

* A closed population of size N is partitioned into three compartments of

N«

individuals: “Susceptible”, “Infectious”, and “Recovered” (SIR model).

* Allindividuals are assumed to be identical in terms of their (i)
susceptibility to infection, (ii) infectiousness if infected, and (iii) mixing
behavior associated with disease transmission (the so-called
homogenous mixing assumption).

St +A)=S()— BSEIF)At

number of infections

. between time ¢ and 1+ At
Susceptible
S(0) It+AD) = I()+ BSHIOA —  al(t)At
) a: \—,_/ e —
Force Of number of infections number of recovery
infection The rate of infection between timer and r+Ar  between time ¢ and r+Az
P » PI(t) is proportional to

disease prevalence

Infectious

()

Infectious people recover
o after being infectious
forl/o. on average

Recovered
R(t)

Infectious, I(t)
= = = Susceptible, S(t)

Hallmarks of an epidemic:

1.

2.

The number of infections
increases exponentially
during the early phase of a
growing epidemic

The epidemic curve is
unimodal and peaks when
the susceptible pool has
been sufficiently depleted
(such thatR, < 1)

Epidemiologic parameters:
Ry=B/a, T,=1/a
r=Ry-1)/T;=p-«a



Building more complexities into the model

Stochasticity (“chance effects”)

More detailed natural history, e.g. asymptomatic infections
Age structure and multiple populations

Aging, birth, deaths, immigration, emigration

Seasonality and other time-dependent forcing
Individual-based model instead of compartmental model

“Everything should be made as simple as possible,
but not simpler.”

- Albert Einstein
Nobel Prize in Physics 1921

Models should be:
* Complex enough to provide robust answers
« Simple enough to avoid unnecessary details




SIR model with vaccination

l b(1- f)

Susceptible, S

e

Infected, I

loc

Recovered, R

bfN

b = birth rate
¢ = death rate
f=vaccine coverage

ds

® _ha—f)N =BSI—cS
dl =Sl —al —(c+o)l
dt

AR _ 1 —cR+bfN

dt

N=S+I|+R



More detailed natural history

* Latent period - the period of time during which the
infected individual is not yet infectious (e.g. the latent
period is 14 days on average for smallpox)

— 4 compartments: “Susceptible”, “Exposed”, “Infectious”, and
“Recovered”

S E— [ R

* More than one possible pathway, e.g. an infected individual
develops symptoms only with probability p

b I
g 1}
A

1-p




Age structure

* Age-specific transmissibility and natural history.

pB;: transmission rate from age group j to age group i. If
there are n age groups, then there are n? f;;’s.

Age group 1 Age group 2
Si(t+At) = S,(1) — BuS; (D1, (YAt — B,,S, (D1, (DAL
s . number of infections in number of infections in
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1 2 time t and t+At time t and t+At
B 1t H’ﬂ [ (t B, 1, (4B L. |1(t+At) =1, (t) + _Bllsl(t)ll(t)At +BLS (L MOAt - oyl (DAL
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L) L) Sp(t+At) =S, (t) — L., (D1 (DAL = B, S, (1)1 (AL
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time t and t+At
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number of recovery
in age group 2 between

Y
number of infections in

Y
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Multiple populations

While the assumption of homogenous mixing may be reasonable for
within-population epidemic dynamics, it is obviously not valid when
considering epidemic dynamics among different populations that are
weakly interacting (e.g. Hong Kong and Beijing)

Common models to simulate epidemic dynamics among populations
(linked by human travel): meta-population models, gravity model

S, — —b —>

_>
Population 1
_ds, dl,
Population 1: 2t =~ (B O+ Bl 0)S,0- kSO + kS, L= (Bu®+ Bl ©)S,0 -0u 0~ KL + kb0
() traveling from  traveling from M (t) traveling from travellngfrom
popltopop2  pop2topopl popltopop2  pop2topopl
Population 2: 2= —(B 1, )+ B, )8, 0+ kS, — kS0, 52 = (Bah 0+ Bl )S,0-w:L O+ khO - k1,

H/_/
M(t) travellng from  traveling from Ay (1) traveling from  traveling from
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	–
	To predict disease severity, e.g. shorter incubation time is associated 
	with more severe outcome
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	Risk of progression to death after AIDS diagnosis 
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	For public health control:
	For public health control:

	–
	–
	–
	–
	–
	To estimate the duration necessary for quarantining suspected or 
	contacts of cases to ensure that they are not infected upon release


	–
	–
	–
	Quarantine means isolating suspected cases and contacts from the 
	community to prevent disease transmission in case they have been 
	infected but do not yet have the clinical or virologic evidence of so. 
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	The incubation period of AIDS had a median of around 9 years and could 
	The incubation period of AIDS had a median of around 9 years and could 
	range from 3 to more than 12 years, so the observed AIDS cases represented 
	only a small proportion of the total number of HIV infections in the 
	population. 

	“
	“
	HIV infection rates are related to AIDS incidence through the incubation period 
	distribution. The fundamental convolution equation is given by

	where a(t) is the cumulative number of cases of AIDS diagnosed by year t, I(s) is 
	where a(t) is the cumulative number of cases of AIDS diagnosed by year t, I(s) is 
	the infection rate in year s, and F(
	t
	|
	s
	) is the incubation period distribution among 
	individuals infected in year s.”

	Brookmeyer
	Brookmeyer
	Science
	1991
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	Asymptomatic or subclinical 
	infection
	carriers are common 
	for many infectious diseases


	Morbidity and mortality observed in the 
	Morbidity and mortality observed in the 
	Morbidity and mortality observed in the 
	clinical settings often constitute only a small 
	proportion of all infections in the population
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	Approximately 95% of persons infected with 
	Approximately 95% of persons infected with 
	polio will have no symptoms. About 4
	-
	8% of 
	infected persons have minor symptoms, such 
	as fever, fatigue, nausea, headache, flu
	-
	like 
	symptoms, stiffness in the neck and back, 
	and pain in the limbs, which often resolve 
	completely. Fewer than 1% of polio cases 
	result in permanent paralysis of the limbs 
	(usually the legs). Of those paralyzed, 5
	-
	10% 
	die when the paralysis strikes the respiratory 
	muscles. The death rate increases with 
	increasing age.

	US CDC
	US CDC
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	•
	•
	•
	•
	•
	Infection attack rate


	–
	–
	–
	–
	The proportion of a population (subgroup) infected 
	over the course of an epidemic



	•
	•
	•
	Secondary (infection) attack rate


	–
	–
	–
	–
	The proportion of individuals infected in a semi
	-
	closed 
	setting (e.g. households, airplanes, military barracks) in 
	an outbreak caused by an index case (ideally accounting 
	for pre
	-
	existing immunity)



	•
	•
	•
	Basic reproductive number


	–
	–
	–
	–
	The average number of secondary cases generated by 
	an index case when an epidemic begins in a completely 
	susceptible population
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	Basic reproductive number, 
	Basic reproductive number, 
	Basic reproductive number, 
	R
	0

	•
	•
	•
	•
	•
	•
	The average number of secondary cases generated by an index case 
	when an epidemic begins in a completely susceptible population .





	Mean generation time, 
	Mean generation time, 
	T
	g

	•
	•
	•
	•
	•
	•
	The average time it takes an index case to infect other individuals after 
	he becomes infected.





	Epidemic growth rate, 
	Epidemic growth rate, 
	r

	•
	•
	•
	•
	•
	•
	The rate at which the number of infections is increasing exponentially


	•
	•
	•
	During the early phase, the epidemic doubling time is 
	t
	d
	= ln2/
	r
	. Why? 
	During this phase, the epidemic size is growing exponentially at rate 
	r
	. 
	This means





	2 
	2 
	×
	current size = current size 
	×
	exp
	(
	rt
	d
	)
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	The average number of secondary cases generated by an 
	The average number of secondary cases generated by an 
	index case in a fully susceptible population:

	–
	–
	–
	–
	–
	Reproductive number, 
	R
	: Same as 
	R
	0
	except that the 
	population needs not be completely susceptible


	•
	•
	•
	•
	Some time after the epidemic has started, in which 
	case we denote the reproductive number by 
	R
	t
	.


	•
	•
	•
	If the population is partially vaccinated before the 
	outbreak.
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	R
	R
	0
	< 1:
	The epidemic will die out 
	without exponential growth
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	How to estimate 
	How to estimate 
	How to estimate 
	R
	0
	?

	•
	•
	•
	•
	Contract tracing and cohort follow
	-
	up.


	•
	•
	•
	Fitting mathematical models to epidemic curves. 
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	Shorter generation time or serial interval means that confirmed and 
	probable cases would need to be identified and removed from the 
	population sooner in order to prevent them from spreading the disease.
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	preventing transmission
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	Latent period
	Latent period
	Latent period

	•
	•
	•
	•
	The time it takes to become infectious after infection.


	•
	•
	•
	Can be longer or shorter than incubation period.
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	•
	•
	•
	•
	•
	Mean generation time 
	T
	g
	: the average time it takes an index case 
	to infect other individuals after he becomes infected.



	•
	•
	•
	•
	R
	0
	, 
	T
	g
	and epidemic growth rate 
	r
	are interrelated. For a given 
	R
	0
	, 
	a shorter 
	T
	g
	means a higher growth rate.
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	Pandemic influenza
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	SARS
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	Smallpox



	4
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	Infectious
	disease
	modeling


	•
	•
	•
	•
	•
	A
	systematic
	way
	of
	translating
	assumptions
	and
	data
	regarding 
	disease
	transmission
	into
	quantitative
	description
	of
	how
	an 
	epidemic
	evolves.


	•
	•
	•
	Just
	like
	animal
	models,
	infectious
	disease
	modeling
	is
	a
	tool
	for 
	helping
	you
	collect
	your
	thoughts
	about
	a
	complex
	problem
	to 
	generate
	and
	test
	hypotheses.


	•
	•
	•
	Some uses
	of infectious
	disease
	modeling:


	–
	–
	–
	–
	Estimating
	transmission
	parameters
	from
	epidemiologic
	data


	–
	–
	–
	Estimating
	effectiveness
	of
	interventions
	from
	epidemiologic
	data,




	e.g.
	e.g.
	vaccination
	or
	school
	closure

	–
	–
	Predicting
	the
	cost
	and
	effectiveness
	of
	intervention
	strategies,
	e.g. 
	vaccinating
	core
	transmission
	group
	vs
	high
	-
	risk
	group
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	The simplest epidemic model


	•
	•
	•
	•
	•
	A closed population of size 
	N
	is partitioned into three compartments of 
	individuals: “Susceptible”, “Infectious”, and “Recovered” (SIR model).


	•
	•
	•
	All individuals are assumed to be identical in terms of their (
	i
	) 
	susceptibility to infection, (ii) infectiousness if infected, and (iii) mixing 
	behavior associated with disease transmission (the so
	-
	called 
	homogenous mixing assumption). 




	Hallmarks of an epidemic:
	Hallmarks of an epidemic:
	Hallmarks of an epidemic:

	1.
	1.
	1.
	1.
	The number of infections 
	increases exponentially 
	during the early phase of a 
	growing epidemic


	2.
	2.
	2.
	The epidemic curve is 
	unimodal
	and peaks when 
	the susceptible pool has 
	been sufficiently depleted 
	(such that 
	R
	t
	< 1)
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	Epidemiologic parameters:

	R
	R
	0
	= 
	β
	/
	α
	, 
	T
	g
	= 1/α

	r
	r
	= (
	R
	0
	−1)/
	T
	g
	= 
	β
	− 
	α
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	•
	•
	•
	•
	•
	Suppose the vaccine is 100% efficacious.


	•
	•
	•
	It is not necessary to vaccinate the whole population to halt 
	a growing epidemic. Why?


	–
	–
	–
	–
	Vaccinating an individual indirectly reduces the risk of infection of 
	this individual’s contacts (herd immunity).
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	•
	•
	•
	•
	•
	Suppose the vaccine is 100% efficacious.


	•
	•
	•
	Critical vaccination coverage, 
	c
	*


	–
	–
	–
	–
	The minimal proportion needed to be vaccinated in order to 
	prevent an epidemic.


	–
	–
	–
	Also called the herd immunity threshold



	•
	•
	•
	In the SIR model, 
	c
	* 
	= 1
	–
	1/
	R
	0
	, i.e. vaccinating a proportion 
	p
	> 1
	–
	1/
	R
	0
	of the population is sufficient to prevent an 
	epidemic. Why?


	–
	–
	–
	–
	After vaccination, the reproductive number is 
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	•
	•
	•
	•
	•
	A closed population of size 
	N
	is partitioned into three compartments of 
	individuals: “Susceptible”, “Infectious”, and “Recovered” (SIR model).


	•
	•
	•
	All individuals are assumed to be identical in terms of their (
	i
	) 
	susceptibility to infection, (ii) infectiousness if infected, and (iii) mixing 
	behavior associated with disease transmission (the so
	-
	called 
	homogenous mixing assumption). 




	Hallmarks of an epidemic:
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	1.
	1.
	1.
	1.
	The number of infections 
	increases exponentially 
	during the early phase of a 
	growing epidemic


	2.
	2.
	2.
	The epidemic curve is 
	unimodal
	and peaks when 
	the susceptible pool has 
	been sufficiently depleted 
	(such that 
	R
	t
	< 1)
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	R
	R
	0
	= 
	β
	/
	α
	, 
	T
	g
	= 1/α

	r
	r
	= (
	R
	0
	−1)/
	T
	g
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	− 
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	•
	•
	•
	•
	•
	Stochasticity
	(“chance
	effects”)


	•
	•
	•
	More
	detailed
	natural
	history
	,
	e.g.
	asymptomatic
	infections


	•
	•
	•
	Age
	structure
	and
	multiple
	populations


	•
	•
	•
	Aging,
	birth,
	deaths,
	immigration,
	emigration
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	•
	•
	Seasonality
	and
	other
	time
	-
	dependent
	forcing
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	•
	•
	Individual
	-
	based
	model
	instead
	of
	compartmental
	model
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	“Everything should 
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	not 
	simpler.”

	-
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	Einstein

	Nobel
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	1921

	Models
	Models
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	•
	•
	•
	•
	Complex
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	to
	provide
	robust
	answers
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	•
	•
	Simple
	enough
	to
	avoid
	unnecessary
	details






	Slide
	Span
	SIR
	SIR
	SIR
	model
	with
	vaccination


	15
	15
	15


	dS
	dS
	dS


	Figure
	dt  
	dt  
	dt  
	dI


	
	
	
	b
	(
	1
	
	f
	)
	N
	
	
	SI
	
	c
	S

	
	
	
	SI
	
	
	I
	
	
	c
	
	
	
	I


	dt
	dt
	dt


	Figure
	Figure
	dR
	dR
	dR
	
	
	I
	
	c
	R
	
	b
	f
	N


	dt
	dt
	dt

	N
	N
	
	S
	
	I
	
	R


	
	
	
	c
	
	
	


	
	
	


	
	
	


	b
	b
	b
	(1
	
	f
	)


	Figure
	Figure
	Figure
	Span
	Susceptible,
	Susceptible,
	Susceptible,
	S



	Figure
	Figure
	Span
	Infected,
	Infected,
	Infected,
	I



	Figure
	Figure
	Figure
	Span
	Recovered,
	Recovered,
	Recovered,
	R



	Figure
	b
	b
	b
	f
	N


	b
	b
	b
	=
	birth
	rate

	c
	c
	=
	death
	rate

	f
	f
	=
	vaccine
	coverage


	c
	c
	c


	c
	c
	c



	Slide
	Span
	More
	More
	More
	detailed 
	natural 
	history


	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	Figure
	•
	•
	•
	•
	•
	Latent 
	period 
	–
	the period 
	of time during 
	which the 
	infected individual 
	is 
	not 
	yet 
	infectious 
	(e.g. 
	the latent 
	period
	is 14
	days
	on
	average
	for
	smallpox)



	–
	–
	4 compartments: 
	“Susceptible”, 
	“Exposed”, 
	“Infectious”, 
	and 
	“Recovered”

	S
	S
	E
	I
	R

	•
	•
	•
	•
	More
	than
	one
	possible
	pathway,
	e.g.
	an
	infected
	individual 
	develops
	symptoms
	only 
	with
	probability 
	p
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	•
	Age
	-
	specific
	transmissibility
	and
	natural
	history.


	•
	•
	•
	β
	ij
	: transmission 
	rate 
	from 
	age 
	group 
	j 
	to 
	age 
	group 
	i. 
	If 
	there
	are
	n
	age
	groups, 
	then
	there 
	are
	n
	2
	β
	ij
	’s.
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	•
	•
	•
	•
	•
	While 
	the assumption of homogenous 
	mixing 
	may 
	be reasonable for 
	within
	-
	population epidemic dynamics, 
	it is 
	obviously 
	not 
	valid 
	when 
	considering
	epidemic
	dynamics
	among
	different
	populations
	that
	are 
	weakly
	interacting
	(e.g.
	Hong
	Kong
	and
	Beijing)


	•
	•
	•
	Common 
	models to 
	simulate 
	epidemic dynamics among populations 
	(linked
	by
	human
	travel):
	meta
	-
	population
	models,
	gravity
	model
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