Control of Multi-drug Resistant Organisms in Ambulatory and Long Term Care Facilities with of COVID-19 Pandemic

Co-organised by Infectious Disease Control Training Centre, Hospital Authority/ Infection Control Branch, Centre for Health Protection and Chief Infection Control Officer's Office, Hospital Authority

Emerging MDROs in Hong Kong

Vincent CHENG

Infection Control Officer, Queen Mary Hospital Chief of Service, Department of Microbiology, Queen Mary Hospital Honorary Professor, Department of Microbiology, The University of Hong Kong

Control of Multi-drug Resistant Organisms in Ambulatory and Long Term Care Facilities with of COVID-19 Pandemic

Co-organised by Infectious Disease Control Training Centre, Hospital Authority/ Infection Control Branch, Centre for Health Protection and Chief Infection Control Officer's Office, Hospital Authority

Emerging MDROs in Hong Kong

Shuk-Ching WONG

Senior Nursing Officer, Infection Control Team, Hong Kong West Cluster

Honorary Assistant Professor, Department of Microbiology, & Honorary Assistant Professor, School of Nursing, The University of Hong Kong

Control of Multi-drug Resistant Organisms in Ambulatory and Long Term Care Facilities with of COVID-19 Pandemic

Co-organised by Infectious Disease Control Training Centre, Hospital Authority/ Infection Control Branch, Centre for Health Protection and Chief Infection Control Officer's Office, Hospital Authority

DISCLOSURES

Conflicts of interest: None to report.

Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance

TABLE 6. Definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria

Bacterium	MDR	XDR	PDR
Staphylococcus aureus	The isolate is non-susceptible to at least I agent in \geq 3 antimicrobial categories listed in Table I ^a	The isolate is non-susceptible to at least I agent in all but 2 or fewer antimicrobial categories in Table 1.	Non-susceptibility to all agents in all
Enterococcus spp.	The isolate is non-susceptible to at least I agent in $\geq \! 3$ antimicrobial categories listed in Table 2	The isolate is non-susceptible to at least I agent in all but 2 or fewer antimicrobial categories in Table 2.	for each bacterium in Tables 1–5
Enterobacteriaceae	The isolate is non-susceptible to at least I agent in ≥ 3 antimicrobial categories listed in Table 3	The isolate is non-susceptible to at least I agent in all but 2 or fewer antimicrobial categories in Table 3.	
Pseudomonas aeruginosa	The isolate is non-susceptible to at least I agent in ≥3 antimicrobial categories listed in Table 4	The isolate is non-susceptible to at least I agent in all but 2 or fewer antimicrobial categories in Table 4.	
Acinetobacter spp.	The isolate is non-susceptible to at least I agent in ≥3 antimicrobial categories listed in Table 5	The isolate is non-susceptible to at least I agent in all but 2 or fewer antimicrobial categories in Table 5.	

MDR: The isolate is non-susceptible to at least 1 agent in ≥3 antimicrobial categories

XDR: The isolate is non-susceptible to at least 1 agent in all but 2 or fewer antimicrobial categories

PDR: The isolate is non-susceptibility to all agents in all antimicrobial categories

Magiorakos AP, et al. Clin Microbiol Infect. 2012 Mar;18(3):268-81.

Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance

Antimicrobial agent

Antimicrobial category

Acinetobacter spp.; antimicrobial categories and agents used to define MDR, XDR and PDR

1			
Aminoglycosides	Gentamicin	Extended-spectrum cephalosporins	Cefotaxime
	Tobramycin		Ceftriaxone
	Amikacin		Ceftazidime
	Netilmicin		Cefepime
Antipseudomonal carbapenems	Imipenem	Folate pathway inhibitors	Trimethoprim-sulphamethoxazole
	Meropenem	Penicillins + β -lactamase inhibitors	Ampicillin-sulbactam
	Doripenem	Polymyxins	Colistin
Antipseudomonal fluoroquinolones	Ciprofloxacin		Polymyxin B
	Levofloxacin	Tetracyclines	Tetracycline
Antipseudomonal penicillins + β -lactamase inhibitors	Piperacillin-tazobactam		Doxycycline
	Ticarcillin-clavulanic acid		Minocycline

Magiorakos AP, et al. Clin Microbiol Infect. 2012 Mar;18(3):268-81.

HEALTHCARE EPIDEMIOLOGY INVITED ARTICLE

Robert A. Weinstein, Section Editor

The Global Spread of Healthcare-Associated Multidrug-Resistant Bacteria: A Perspective From Asia

James S. Molton,^{1,2} Paul A. Tambyah,^{1,2} Brenda S. P. Ang,³ Moi Lin Ling,⁴ and Dale A. Fisher^{1,2}

¹Division of Infectious Diseases, National University Health System; ²Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore; ³Department of Infectious Diseases, Tan Tock Seng Hospital; and ⁴Department of Infectious Diseases, Singapore General Hospital, Singapore

Journal of Microbiology, Immunology and Infection (2011) 44, 157-165

PERSPECTIVES

Emergence and spread of multi-drug resistant organisms: Think globally and act locally

Shu-Hui Tseng^a, Chun-Ming Lee^b, Tzou-Yien Lin^c, Shan-Chwen Chang^d, Feng-Yee Chang^{a,e,*}

Number of patients with newly diagnosed MDROs in Hospital Authority

2014 2015 2016 2017 2018 2019 2020

Methicillin-resistant Staphylococcus aureus	MRSA	8220	8543	8566	9213	9743	9593	8770
ESBL producing Enterobacteriaceae	ESBL	12652	13321	13233	13420	13590	13936	12827
Multidrug-resistant Acinetobacter species	MDRA	1548	976	657	553	549	445	515
Vancomycin-resistant Enterococcus (clinical + screening specimen)	VRE	88 (1203)	30 (378)	27 (182)	20 (281)	31 (302)	9 (92)	14 (70)
Carbapenemase producing Enterobacteriaceae (clinical + screening specimen)	СРЕ	11 (108)	20 (134)	45 (340)	46 (473)	88 (972)	168 (1584)	182 (1574)
Multidrug-resistant Pseudomonas aeruginosa	MRPA	10	3	6	8	3	8	5
Vancomycin-resistant Staphylococcus aureus	VRSA	0	0	0	0	0	0	0

Data from Hospital Authority; Courtesy of Dr. Vivien Chuang

Resistance rate of MDROs in Hospital Authority

Data from Hospital Authority; Courtesy of Dr. Vivien Chuang

COVID-19 & ANTIMICROBIAL RESISTANCE: DUAL HEALTH THREATS

2,000,000+ people will have died due to COVID-19¹

700,000+ people will have died due to drug-resistant infections²

Increase in Hospital-Acquired Carbapenem-Resistant Acinetobacter baumannii Infection and Colonization in an Acute Care Hospital During a Surge in COVID-19 Admissions — New Jersey, February–July 2020

Weekly / December 4, 2020 / 69(48);1827-1831

On December 1, 2020, this report was posted online as an MMWR Early Release.

Stephen Perez, PhD^{1,2}; Gabriel K. Innes, VMD, PhD²; Maroya Spalding Walters, PhD³; Jason Mehr, MPH²; Jessica Arias²; Rebecca Greeley, MPH²; Debra Chew, MD⁴ (<u>View author affiliations</u>)

MMWR Morb Mortal Wkly Rep. 2020 Dec 4;69(48):1827-1831.

Absence of nosocomial influenza and respiratory syncytial virus infection in the coronavirus disease 2019 (COVID-19) era: Implication of universal masking in hospitals

Shuk-Ching Wong MNurs¹, Germaine Kit-Ming Lam MNurs¹, Christine Ho-Yan AuYeung MNurs¹, Veronica Wing-Man Chan MPH¹, Newton Lau-Dan Wong MNurs¹, Simon Yung-Chun So MMedSc², Jonathan Hon-Kwan Chen PhD², Ivan Fan-Ngai Hung MD³, Jasper Fuk-Woo Chan MD⁴, Kwok-Yung Yuen MD⁴ and Vincent Chi-Chung Cheng MD^{1,2}

¹Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China, ²Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China, ³Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China and ⁴Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China

Q

About us	Our Work	What's New	Press Releases and Publications	Boards and Committees	Fund Application	SFH's Blog	Photo Gallery
B Hig	Oards and	I Committee	eS Antimicrobial Resist	ance			< Back

Centre for Health Protection Department of Health The Government of the Hong Kong Special Administrative Region

Expert Committee on Antimicrobial Resistance

Control of MRSA in Hong Kong

Visit old age homes by CHP & ICT, QMH (23 Sep to 25 Oct 2021)

<u>SET</u> a mission impossible: <u>Screening / Sampling</u>, <u>Education & Training</u>

Collection of nasal, axilla, groin, and rectal swabs for each resident by our nurses (Infection Control Team, QMH, and Infection Control Branch, CHP)

Special thanks to Dr. Janice LO

Evolution of MRSA in the old age homes in HK

Epidemiology and Genetic Diversity	Jan 2005
of Methicillin-Resistant <i>Staphylococcus aureus</i> Strains	949 residents in
in Residential Care Homes for Elderly Persons in Hong Kong	13 residential care homes
Pak-Leung Ho, FACP; Teresa K. F. Wang, MD; Patricia Ching, RN;	Nasal swab ± active skin lesions
Gannon C. Mak, MPhil; Eileen Lai, MSc; Wing-Cheong Yam, PhD; Wing-Hong Seto, MD	MRSA colonization:
Ho PL, et al. Infect Control Hosp Epidemiol. 2007 Jun;28(6):671-8.	2.8% (27/949)
Molecular epidemiology of methicillin-resistant <i>Staphylococcus aureus</i> in residential care homes for the elderly in Hong Kong Pak-Leung Ho ^{a,*} , Eileen L. Lai ^a , Kin-Hung Chow ^a , Louisa S.M. Chow ^b , Kwok-Yung Yuen ^a , Raymond W.H. Yung ^b ^a Division of Infectious Diseases, Department of Microbiology and Centre of Infection, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China ^b Department of Health, Infection Control Branch, Center for Health Protection, Hong Kong SAR, China Received 11 October 2007; accepted 16 December 2007 Ho PL, et al. Diagn Microbiol Infect Dis. 2008 Jun;61(2):135-42.	Jun-Dec 2005 1563 residents in 487 residential care homes Nasal swab ± active skin lesions MRSA colonization: 5.1% (80/1563)

Transmission of methicillin-resistant *staphylococcus aureus* in the long term care facilities in Hong Kong

Vincent CC Cheng^{1,2}, Josepha WM Tai², Zoie SY Wong³, Jonathan HK Chen¹, Kris BQ Pan³, Yizhen Hai³, Wing-Chun Ng⁴, Denise MK Chow⁵, Miranda CY Yau¹, Jasper FW Chan^{1,2}, Sally CY Wong^{1,2}, Herman Tse^{1,6}, Sophia SC Chan⁵, Kwok-Leung Tsui³, Felix HW Chan⁴, Pak-Leung Ho^{1,6} and Kwok-Yung Yuen^{1,6}*

Cheng VC, et al. BMC Infect Dis. 2013 May 6;13:205.

Jul-Dec 2011 2020 residents in 40 residential care homes Nasal swab MRSA colonization: 21.6% (436/2020) Evolution of MRSA in the old age homes in HK

Emergence of Carbapenem-Resistant *Acinetobacter baumannii* in Nursing Homes With High Background Rates of MRSA Colonization

1408 residents from 28 RCHEs (Jul to Aug 2015) Prevalence of MRSA: 32.2%

Prevalence of CRAB: 6.5%

Cheng VCC, et al. Infect Control Hosp Epidemiol. 2016 Aug;37(8):983-986.

Multidrug-resistant organism carriage among residents from residential care homes for the elderly in Hong Kong: a prevalence survey with stratified cluster sampling

1028 residents from 20 RCHEs (Sep to Dec 2015) **Prevalence of MRSA: 30.1%** Prevalence of MDRA: 0.6%

Chen H, et al. Hong Kong Med J. 2018 Aug;24(4):350-360.

The prevalence of MRSA in old age home

There is no highest, only higher !

Demographic characteristics of 2020 residents with or without MRSA colonization in 40 RCHEs in Hong Kong

	MRSA carrier (n=436)	Non-MRSA carrier (n=1584)	p value
Age (mean ± SD)	84.1 ± 9.2	83.5 ± 9.4	0.255
Sex (male)	165 (37.8%)	563 (35.5%)	0.376
History of hospital admission in the	315 (72.2%)	851 (53.7%)	<0.001
past 12 months			
Cumulative day of hospitalization in	18.8 ± 29.5	9.8 ± 19.2	<0.001
the past 12 months			
Underlying diseases			
Chronic cerebral conditions	140 (32.1)	341 (21.5%)	<0.001
Chronic cardiac conditions	69 (15.8%)	172 (10.9%)	0.005
Chronic pulmonary conditions	35 (8.0%)	76 (4.8%)	0.009
Chronic renal failure	19 (4.4%)	35 (2.2%)	0.014
Diabetes mellitus	80 (18.3%)	196 (12.4%)	0.001
Malignancy	26 (6.0%)	48 (3.0%)	0.004
Presence of			
Nasogastric tube	83 (19.0%)	193 (12.2%)	<0.001
Urinary catheter	80 (18.3%)	153 (9.7%)	< 0.001
Wound or ulcer	41 (9.4%)	39 (2.5%)	<0.001
Received antibiotics 3 months before admission (yes / no)	160 (36.7%)	307 (19.4%)	<0.001

Cheng VC, et al. BMC Infect Dis. 2013 May 6;13:205.

Risk factors for gastrointestinal colonization of methicillin-resistant *Staphylococcus aureus* (MRSA) in age and sex matched controls

Characteristics	Patients with	Patients without	Bivariable analysis		Multivariable analysis ^c	
	gastrointestinal colonization of MRSA (n=919) ^a	gastrointestinal colonization of MRSA (n=1,838) ^b	Odds ratio (95% CI)	p value	Odds ratio (95% CI)	p value
Patient referred from RCHE	460	366	4.03	<0.001	4.18	<0.0
	(50.1%)	(19.9%)	(3.39-4.79)		(3.50-4.99)	01
Presence of indwelling device ^d	235 (25.6%)	441 (24.0%)	1.09 (0.91-1.31)	0.364		
Presence of chronic diseases ^e	367 (39.9%)	735 (40.0%)	1.00 (0.85-1.17)	0.978		
Co colonization in gastrointestinal tract						
Clostridioides difficile	3 (0.3%)	11 (0.6%)	0.54 (0.15-1.96)	0.351		
СРЕ	18 (2.0%)	24 (1.3%)	1.51 (0.82-2.80)	0.190		
MRAB	11 (1.2%)	18 (1.0%)	1.23 (0.58-2.60)	0.598		
VRE	2 (0.2%)	4 (0.2%)	1.00 (0.18-5.47)	1.000		
Use of antibiotics in preceding 6 months						
BL/beta lactamase inhibitors	197 (21.4%)	286 (15.6%)	1.48 (1.21-1.81)	< 0.001		
Cephalosporins	61 (6.6%)	81 (4.4%)	1.54 (1.10-2.17)	0.013	1.61 (1.11-2.31)	0.011
Carbapenems	76 (8.3%)	113 (6.1%)	1.38 (1.02-1.86)	0.038		
Fluoroquinolones	134 (14.6%)	144 (7.8%)	2.01 (1.56-2.58)	<0.001	1.76 (1.34-2.30)	<0.001
Use of proton pump inhibitors in preceding 6 months ^f	510 (55.5%)	813 (44.2%)	1.57 (1.34-1.84)	<0.001	1.31 (1.10-1.56)	0.002
History of hospitalization in the past 6 months	705 (76.7%)	1121 (61.0%)	2.11 (1.76-2.52)	<0.001	1.90 (1.56-2.30)	<0.001

Wong Shuk-Ching, et al. (Manuscript submitted & under review)

Transmission dynamic of MRSA between old age homes and HA hospitals

Old age Homes Incidence of MRSA transmission per 1000-colonization-days: 309

> Hospitals (HKWC) Incidence of MRSA transmission per 1000 colonization days: 113

Cheng VC, et al. BMC Infect Dis. 2013 May 6;13:205.

The trend of usage density of broad-spectrum antibiotics & fluoroquinolones and incidence density of ICU onset MRSA infection

Cheng VC, et al. BMC Infect Dis. 2010 Sep 7;10(1):263.

Controlling nosocomial transmission of MRSA in Queen Mary hospital, HK

Figure 3. Incidence rate of hospital-acquired MRSA per 1000 MRSA-positive-days in three different phases of intervention.

Cheng VC, et al. PLoS One. 2014 Jun 19;9(6):e100493.

Low education level of old age home staff in Chinese nursing homes (Cross-sectional study conducted in December 2012 – 58 nursing homes at HKWC)

	Staff of Nonprofit Nursing Homes, n = 554	Staff of For-Profit Nursing Homes, n = 746	P Value
Age, y, mean \pm SD	43.8 ± 10.6	49.8 ± 11.5	<.001
Gender, male, n (%)	11.4 (85)	13.0 (72)	.38
Level of education, n (%)			<.001
Tertiary level*	15.7 (87)	6.4 (48)	
Secondary level*	62.5 (345)	45.0 (345)	
Primary level*	18.1 (100)	40.3 (301)	
No formal education	2.3 (13)	6.0 (45)	
No opinion	1.6 (9)	2.3 (17)	
Staffing ratio, mean \pm SD			
No. of staff per 100 residents	40.3 ± 13.5	21.8 ± 8.8	<.001
Converted to HPRD	2.8 ± 0.9	1.5 ± 0.6	
Tertiary staff ratio, mean \pm SD			
No. of staff with tertiary level	1.3 ± 1.1	1.3 ± 1.1	<.001
per 100 residents			
Converted to HPRD	0.4 ± 0.2 HPRD	$0.09\pm0.07\text{ HPRD}$	

Characteristics of 1300 Respondents

HPRD, hour per resident day.

*Tertiary level: >grade 12; secondary level: grade 7–12; primary level: grade 1–6.

Chant TC, et al. J Am Med Dir Assoc. 2013 Nov;14(11):849-50.

Relationship between the MRSA prevalence per RCHE and the average living area (square feet) per RCHE resident

60

Cheng VC, et al. BMC Infect Dis. 2013 May 6;13:205.

Population density of Hong Kong Special Administration Region, China (2015) 6940 people per sq. km (Rank 4th in the world) (c.f United States: 35 people per sq. km - rank 176th in the world)

How can we control MD vercrowding environment? vs Emerging MDROs Endemic

Data from Department of Economic and Social Affairs, UN (http://esa.un.org/unpd/wpp/Download/Standard/Population/)

Environmental Cleaning and Disinfection

High-touch and mutual-touch surfaces or items in acute wards, Queen Mary Hospital Contact-episodes per hour per a 6-bedded cubicle

14 contact-episodes / h

12 contact-episodes / h

9 contact-episodes / h

1107 person-episodes involving in 6144 contact-episodes in 33 working days

6 contact-episodes / h

4 contact-episodes / h

1 contact-episodes / h

Cheng VC, et al. J Hosp Infect. 2015 Jul;90(3):220-5.

Role of Hand Hygiene Ambassador and Implementation of Directly Observed Hand Hygiene Among Residents in Residential Care Homes for the Elderly in Hong Kong

Vincent C. C. Cheng, MD;^{1,2} Hong Chen, MD;³ Shuk-Ching Wong, MNurs;² Jonathan H. K. Chen, PhD;¹ Wing-Chun Ng, MNurs;⁴ Simon Y. C. So, MMedSc;¹ Tuen-Ching Chan, MD;⁴ Sally C. Y. Wong, FRCPath;¹ Pak-Leung Ho, MD;¹ Lona Mody, MD;⁵ Felix H. W. Chan, MD;⁴ Andrew T. Y. Wong, MD;³ Kwok-Yung Yuen, MD¹

Infect Control Hosp Epidemiol. 2018 May;39(5):571-577.

	Environmental Sample Collected per Time Point in	Environmental Sample Collected per Time Point in	
	Intervention Arm, n/N (%) ^a	Nonintervention Arm, n/N (%) ^a	P Value
Contamination of MRSA			
Baseline (time point 0)	16/50 (32) ^b	17/50 (34)	.248
Week 1 (time point 1)	5/50 (10)	10/50 (20)	.161
Week 1 (time point 2)	5/50 (10)	15/50 (30)	.012
Week 2 (time point 3)	8/50 (16)	13/50 (26)	.220
Week 2 (time point 4)	6/50 (12)	14/50 (28)	.046
Week 3 (time point 5)	7/50 (14)	15/50 (30)	.053
Week 3 (time point 6)	4/50 (8)	18/50 (36)	.001
Week 4 (time point 7)	5/50 (10)	17/50 (34)	.004
Week 4 (time point 8)	5/50 (10)	14/50 (28)	.022
Week 5 (time point 9)	5/50 (10)	18/50 (36)	.002
Week 5 (time point 10)	3/50 (6)	13/50 (26)	.006
Week 6 (time point 11)	5/50 (10)	18/50 (36)	.002
Week 6 (time point 12)	5/50 (10)	15/50 (30)	.012
Weeks 1–6 (time points 1–12)	79/600 (13.2) ^b	197/600 (32.8)	<.001

Directly observed hand hygiene — from healthcare workers to patients

V.C.C. Cheng^{a,b}, S-C. Wong^b, S.C.Y. Wong^a, K-Y. Yuen^{c,*}

^a Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China ^b Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China ^c Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China

Nurse gives tablet of 1 gm Augmentin to patient; Patient - no hand hygiene !

Patient's fingers & environment full of VRE

Compliance of self-initiated patient hand hygiene with respect to different age group (overall compliance ~ 38%)

	Observed	Observed	Observed	Overall P
	Moment 1	Moment 2	Moment 3	value
	(before snacks,	(after use of	(after	
	drinks, prn drugs	bedpan/urinal	attending	
	at the bedside)	at the bedside)	toilet facilities)	
Patient aged				
≤ 34 years	12.2% (6/49)	66.7% (4/6)	90.9% (20/22)	<0.001
35 to 49 years	21.0% (17/81)	33.3% (2/6)	86.4% (19/22)	<0.001
50 to 64 years	34.7% (33/95)	28.6% (4/14)	81.0% (17/21)	<0.001
65 to 79 years	32.7% (36/110)	30.8% (8/26)	95.7% (22/23)	<0.001
≥ 80 years	24.7% (20/81)	5.9% (1/17)	100% (9/9)	<0.001
Overall	26.9% (112 /416)	27.5% (19/69)	89.7% (87/97)	<0.001

Between 14 January and 30 June 2015, a total of 582 conscious patients were observed for 114 working days, with an average of 5 patients per day.

Cheng VC, et al. Am J Infect Control. 2016 Jun 1;44(6):621-4.

入院七件事,確保你安全 Seven Important Things To Protect Yourself While In Hospital

瑪麗醫院控制感染2013年九月 QN

QMH Infection Control Sep 2013

Cheng VC, et al. Emerging Microbes & Infections (2015) 4, e8.

Control of hospital endemicity of multiple-drug-resistant *Acinetobacter baumannii* ST457 with directly observed hand hygiene

Prevalence of multiple-drug resistant A. baumannii in HKWC

Cheng VC, et al. Eur J Clin Microbiol Infect Dis. 2015 Apr;34(4):713-8.

The observed incidence and the predicted incidence of vancomycin resistant enterococci (VRE) based on the segmented Poisson regression before and after the territory-wide implementation of the **directly observed hand hygiene-based infection control measures**

Cheng VC, et al. Am J Infect Control. 2016 Oct 1;44(10):1168-1171.

ICPIC2019

INTERNATIONAL CONFERENCE ON PREVENTION & INFECTION CONTROL

Geneva, Switzerland 🗘

10-13 September 2019

OPENING CEREMONY

18:00 - 19:00

Keynotes opening lectures Chair: Stephan Harbarth (CH)

Cheng VC, Wong Shuk-Ching, et al. Am J Infect Control. 2017 May 1;45(5):562-565.

Patient empowerment in hand hygiene: a pilot program in TWH / GH (HKWC)

	Baseline (May-Jun 16)	Intervention (Jul-Aug 16)	Entire <u>period</u>
Patient (TWH)	130	128	258
Patient (GH)	72	39	111
Subtotal	202	167	369
Staff (TWH)	139	78	217
Staff (GH)	52	36	88
Subtotal	191	114	305

Promotion & Implementation of Patient Empowerment in Hand Hygiene

手衛生,要做到 你我齊參與 有你提示會更好

瑪麗醫院感染控制組

Regular meeting with patients' group representative with hospital management team, Queen Mary Hospital (10 February 2018)

(Participants agreed to use this photo for education & promotion)

Number of patients with newly diagnosed MDROs in Hospital Authority

2014 2015 2016 2017 2018 2019 2020

Methicillin-resistant Staphylococcus aureus	MRSA	8220	8543	8566	9213	9743	9593	8770
ESBL producing Enterobacteriaceae	ESBL	12652	13321	13233	13420	13590	13936	12827
Multidrug-resistant Acinetobacter species	MDRA	1548	976	657	553	549	445	515
Vancomycin-resistant Enterococcus (clinical + screening specimen)	VRE	88 (1203)	30 (378)	27 (182)	20 (281)	31 (302)	9 (92)	14 (70)
Carbapenemase producing Enterobacteriaceae (clinical + screening specimen)	СРЕ	11 (108)	20 (134)	45 (340)	46 (473)	88 (972)	168 (1584)	182 (1574)
Multidrug-resistant Pseudomonas aeruginosa	MRPA	10	3	6	8	3	8	5
Vancomycin-resistant Staphylococcus aureus	VRSA	0	0	0	0	0	0	0

Data from Hospital Authority; Courtesy of Dr. Vivien Chuang

Multi-pronged screening strategy for early recognition of gastrointestinal colonization of CPE in Hong Kong West Hospital Network (1 July 2011 to 30 June 2019)

Yield of screening of gastrointestinal colonization of carbapenemase-producing Enterobacteriaceae in Hong Kong West Hospital Network (1 July 2011 to 30 June 2019)

Community acquisition of carbapenemase-producing Enterobacteriaceae in Hong Kong (1 July 2011 to 30 June 2019)

Epidemiological exposure of patient with or without community acquisition of CPE

				19 No. 2			
	Patient with gastrointestinal colonization of CPE $(n=30)^{a}$	Patient without gastrointestinal colonization of CPE (n=33) ^b	<i>p</i> value		Patient with gastrointestinal colonization of CPE $(n=30)^{a}$	Patient without gastrointestinal colonization of CPE (n=33) ^b	<i>p</i> value
Female sex (%)	16 (53.3%)	18 (54,5%)	0.923	Purchase of the follow	ving food items in wet m	narket in the past 3 month	is (Y/N)
Age (mean \pm SD)	51.9 ± 17.3	50.5 ± 23.7	0.793	Pork (raw)	21 (70.0%)	19 (57.6%)	0.306
Consumption of the	following food items in	the past 3 months (Y/N)		Beef (raw)	20 (66.7%)	17 (51.5%)	0.222
Salad	18 (60.0%)	18 (54.5%)	0.962	Chicken (raw)	21 (70.0%)	17 (51.5%)	0.134
Sashimi	20 (66.7%)	15 (45.5%)	0.091	Vegetable	21 (70.0%)	21 (63.6%)	0.593
Sushi	21 (70.0%)	16 (48.5%)	0.083	Seafood	20 (66.7%)	15 (45.5%)	0.091
Chinese steamed chicken	24 (80.0%)	25 (75.8%)	0.686	Purchase of the follow (Y/N)	wing food items in wet	market for > 3 times per	week
Meat (raw)	6 (20.0%)	8 (24.2%)	0.686	Pork (raw)	15 (50.0%)	6 (18.2%)	0.007
Oyster (raw)	14(46.7%)	10(30.3%)	0.182	Beef (raw)	15 (50.0%)	7 (21.2%)	0.017
Sov source crab	5 (16.7%)	4 (12.1%)	0.607	Chicken (raw)	12 (40.0%)	5 (15.2%)	0.026
Bloody clam	6 (20.0%)	3 (9,1%)	0.217	Vegetable	15 (50.0%)	8 (24.2%)	0.034
Shrimp (raw)	11 (36.7%)	10 (30.3%)	0.593	Seafood	11 (36.7%)	9 (27.3%)	0.424
Tomato (raw)	16 (53.3%)	14 (42.4%)	0.387	Cook by patient at	20 (66.7%)	19 (57.6%)	0.458
Consumption of the	following food items > 3	3 times per week (Y/N) °		home in the past			
Salad	2 (6.7%)	0	0.223	3 months (Y/N)			
Sashimi	4 (13.3%)	2 (6.1%)	0.412	Cook by patient at	14 (46.7%)	12 (36.4%)	0.407
Sushi	4 (13.3%)	2 (6.1%)	0.412	home for >1			
Chinese steamed chicken	4 (13.30%)	1 (3.03%)	0.183	episode per week (Y/N)			
Tomato (raw)	5	0			100 (1110) - 500 (1110) - 50 (1110)		

CPE, carbapenemase-producing Enterobacteriaceae

A A A 繁简 < Ҕ

Enter search keyword(s)

हिन्दी (Hindi) | नेपाली (Nepali) | اردو (Urdu) | ไทย (Thai) | Bahasa Indonesia | Tagalog |

Hot searches: COVID-19 Virus, Vaccine, Quarantine, Buildings, Confirmed Case

About	Health Topics	Recommendations	Resources	Statistics	Media Room	Others

Home > Statistics > Statistics on Antimicrobial Resistance Control

Antimicrobial Resistance Surveillance in Food – Raw meat

*Raw beef, chicken and pork

https://www.chp.gov.hk/en/static/104186.html

Q

🗛 🗛 繁 简 < 🗟

Enter search keyword(s)

हिन्दी (Hindi) | नेपाली (Nepali) | اردو (Urdu) | ไทย (Thai) | Bahasa Indonesia | Tagalog |

Hot searches: COVID-19 Virus, Vaccine, Quarantine, Buildings, Confirmed Case

About	Health Topics	Recommendations	Resources	Statistics	Media Room	Others	

The statistics > Statistics on Antimicrobial Resistance Control

Antimicrobial Resistance Surveillance in Food – Ready-to-eat food

	12/2019 to 6/2020
Number of samples tested by selective isolation	304*
Samples positive for extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae	42 (13.8%)
Samples positive for meropenem-resistant organisms	5 (1.6%)
Samples positive for vancomycin-resistant Enterococcus	0 (0%)
Total number of samples positive	46 (15.1%)

*Ready-to-eat vegetable salad, salmon sashimi and tuna sashimi

https://www.chp.gov.hk/en/static/104187.html

Q

https://www.cfs.gov.hk/english/multimedia/multimedia_pub/multimedia_pub_fsf_143_01.html

Contents lists available at ScienceDirect

EClinicalMedicine

journal homepage: https://www.journals.elsevier.com/ eclinicalmedicine

EClinicalMedicine

Published by THE LANCET

Commentary

Control of Carbapenemase-producing Enterobacteriaceae: Beyond the Hospital

Vincent C.C. Cheng^{a,b}, Shuk-Ching Wong^b, Sally C.Y. Wong^a, Pak-Leung Ho^c, Kwok-Yung Yuen^{c,*}

^a Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China

^b Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China

^c Department of Microbiology, The University of Hong Kong, Hong Kong Special Administrative Region, China

Geographical distribution of studies included in the review (percentage of communityassociated or community-onset carbapenem-resistant Enterobacteriaceae)

Kelly AM, et al. Int J Antimicrob Agents. 2017 Aug;50(2):127-134.

Dissemination of NDM-1 positive bacteria in the New Delhi environment (From Sept 26 to Oct 10, 2010)

Figure 1: Map of NDM-1-positive samples from New Delhi centre and surrounding areas

Swabs absorbing about 100 µL of seepage water (ie, water pools in streets or rivulets) and 15 mL samples of public tap water were collected from sites within a 12 km radius of central New Delhi Walsh TR, et al. Lancet Infect Dis. 2011 May;11(5):355-62.

Bacteria with blaNDM-1 were grown from 12 (7%) of 171 seepage samples and two (4%) of 50 water samples, and included 11 species in which NDM-1 has not previously been reported, including Shiqella boydii and Vibrio cholerae

Air dispersal of multidrug-resistant *Acinetobacter baumannii*: implications for nosocomial transmission during the COVID-19 pandemic

S.-C. Wong^a, G.K.-M. Lam^a, J.H.-K. Chen^b, X. Li^b, F.T.-F. Ip^c, L.L.-H. Yuen^a, V.W.-M. Chan^a, C.H.-Y. AuYeung^a, S.Y.-C. So^b, P.-L. Ho^d, K.-Y. Yuen^d, V.C.-C. Cheng^{a, b, *}

^a Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong, China

^b Department of Microbiology, Queen Mary Hospital, Hong Kong, China

^c Department of Medicine, Queen Mary Hospital, Hong Kong, China

^d Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China

— Number of environmental sample taken per period per ward

Ching, et al. Am J Infect Control. 2018 Jan;46(1):60-66.

Air dispersal of multidrug-resistant Acinetobacter baumannii

Wong Shuk-Ching, et al. J Hosp Infect. 2021 Oct;116:78-86.

Collection of environmental and air samples for multidrug resistant *Acinetobacter baumannii* (MRAB) in the medical neurology ward

Type of samples	No. of sample	No. (%) of positive	Date (day ^a) of collection	No. of MRAB positive	Remark
				patients during	
				sampling	
Frequently touched items	9	3 (33.3%)	Jul 3, 2020 (5)	1	Environmental sampling was initiated due to lab
by sponge swab					report of the 1 st MRAB patient issued on Jul 2
	9	9 (100%)	Sep 2, 2020 (66)	1	Associated with subsequent diagnosis of 5 MRAB
					patients in the same ward
	9	0 (0%)	Sep 11, 2020 (75)	6	Post-disinfection sample collection as an audit of
					environmental cleaning
Subtotal	27	12 (44.4%)			
Air sample by air sampler	1	0 (0%)	Sep 14, 2020 (78)	6	Cubicle center 30 min before diaper change
	1	1 (100%)	Sep 14, 2020 (78)	6	Cubicle center: during diaper change
	1	0 (0%)	Sep 17, 2020 (81)	6	Cubicle center 30 min before diaper change
	1	1 (100%)	Sep 17, 2020 (81)	6	Cubicle center: during diaper change
	1	0 (0%)	Sep 18, 2020 (82)	6	Cubicle center 30 min before diaper change
	1	1 (100%)	Sep 18, 2020 (82)	6	Cubicle center: during diaper change
	1	0 (0%)	Sep 23, 2020 (87)	6	Cubicle center 30 min before diaper change
	1	1 (100%)	Sep 23, 2020 (87)	6	Cubicle center: during diaper change
Subtotal	8	4 (50%)			
Air sample by settle plate	6	0 (0%)	Sep 23, 2020 (87)	6	At beside table: 30 min before diaper change
	6	0 (0%)	Sep 23, 2020 (87)	6	At bedside table: during diaper change
	5	0 (0%)	Sep 25, 2020 (89)	6	At beside table: 30 min before diaper change
	5	2 (40%)	Sep 25, 2020 (89)	6	At bedside table: during diaper change
	6	0 (0%)	Sep 30, 2020 (94)	5	At bedside table: no patient care in day time
	14	0 (0%)	Sep 30, 2020 (94)	5	Inverted and adhered in ward ceiling
Subtotal	42	2 (4.8%)			

Wong Shuk-Ching, et al. J Hosp Infect. 2021 Oct;116:78-86.

Collection of environmental and air samples for multidrug resistant *Acinetobacter baumannii* (MRAB) in the medical neurology ward

Type of samples	No. of	No. (%) of	Date (day ^a) of	No. of MRAB	Remark
	sample	positive	collection	positive	
				patients during	
				sampling	
Exhausted air grills by sponge	3	3 (100%)	Sep 14, 2020 (78)	6	Al 3 exhausted air grills in ward were positive
swab					
	3	1 (33.3%)	Sep 23, 2020 (87)	6	Close proximity to cohort cubicle was positive
	3	1 (33.3%)	Sep 25, 2020 (89)	6	Close proximity to cohort cubicle was positive
	3	1 (33.3%)	Oct 20, 2020 (114)	3	Close proximity to cohort cubicle was positive
	3	0 (0%)	Oct 23, 2020 (117)	3	
	3	0 (0%)	Oct 27, 2020 (121)	3	
	3	0 (0%)	Nov 3, 2020 (128)	2	
	3	0 (0%)	Nov 17, 2020 (142)	1	
	3	0 (0%)	Nov 24, 2020 (149)	1	
Subtotal	27	6 (22.2%)			
Non reachable surfaces at	8	5 (62.5%)	Oct 20, 2020 (114)	3	Pre-disinfection
high levels by sponge swab					
	8	2 (25%)	Oct 20, 2020 (114)	3	4 h post-disinfection
	8	1 (12.5%)	Oct 23, 2020 (117)	3	Pre-disinfection
	8	0 (0%)	Oct 27, 2020 (121)	3	Pre-disinfection
	8	0 (0%)	Nov 3, 2020 (128)	2	Pre-disinfection
	8	0 (0%)	Nov 17, 2020 (142)	1	Pre-disinfection
	8	0 (0%)	Nov 24, 2020 (149)	1	Pre-disinfection
Subtotal	56	8 (14.3%)			

^a It represented the number of day after the first patient MRAB patient diagnosed in the ward.

Day 1 was denoted on June 29, 2020, as the date of specimen collection with positive MRAB culture.

Literature review on air sampling for Acinetobacter baumannii in the clinical setting

No.	Country [setting]	Study period [year of publication]	Resistant pattern	Air sampling method (by machine, M, or settle plate, SP)	No. of patient ^a	No. (%) of air sample +ve for A. baumannii [remark, if any]	Typing ^b [relatedness of clinical & air samples]	Ref
1	Argentina [ICU]	Jul-Sep, 2003 [2008]	CSAB, CRAB	M: AF 11, T 20 min M: AF 250, T 4 min SP: NS	NM	4 (7.4%) / 54	PFGE [NM]	23
2	US [ICU]	Mar-Apr, 2012 [2013]	CSAB, CRAB	SP: T 24–48 hours; at head of bed ~ 2.25 m from the floor	53	12 (22.6%) / 53	PFGE [clonally related]	24
3	China [ward]	Jan-Jun, 2011 [2014]	CRAB	M: AF 28.3, T 10 min; at ward center & corridor ~ 1.5 m from the floor	NM	16 [majority of air samples were negative]	REP-PCR [NM]	25
4	US [ICU]	Mar-Jul, 2013 [2015]	CRAB	SP: T 24 hours; ~ 90 cm from headboard & within 90 cm of roof tile	30	NS [positive air sample ~ 21% of study days]	REP-PCR [4 of 6 air/clinical isolate pairs closely related]	26
5	US [ICU]	May-Dec, 2013 [2015]	MRAB ^c	M: AF 28.3, T 1 hour; 3 feet from head of bed	12	1 (8.3%) / 12	ND	27
6	US [ICU]	Oct, 2013-Feb, 2014 [2016]	CRAB	SP: T 24 hours; ~ 2 feet from headboards & 2 feet from roof tiles	25	36 (19.6%) / 184	ND	28
7	Thailand [ward]	Jan 2015 [2016]	CRAB	SP: T 6 hours; vicinity at bedside & 1 m from the floor	434 ^d	0 / 3,472 ^e	NA	29
8	Turkey [ICU]	NM [2016]	CSAB, CRAB	M: AF NM, T NM; from 4 defined areas in ICU & ~ 1 m, 2 m, and 3 m from bed	NM	26 (13.9%) / 186 ^f	REP-PCR [18 air strains clonally related to the clinical strains of 9 patients]	30
9	Ethiopia [ICU, OT, DR]	Dec, 2015-Apr, 2016 [2017]	CSAB, CRAB	M: AF 28.3, T 5 min SP: NS	NM	43 (19.9%) / 216	ND	31
10	Iran [ICU, OT ward] ^g	Apr, 2014-Apr, 2015 [2017]	CRAB	M: AF 10; T 4 hours; ~ 1.5 m from the floor	NM	7 (10.9%) / 64	ND	32
11	China [ICU, ward]	May-Nov, 2014 [2018] ^h	CRAB	M: AF 28.3, T 20 min; at ward center & corridor ~ 1.5 m from the floor	NM	4 (6.3%) / 64	PFGE & MLST [1 air & 1 clinical strain with same PFGE & MLST pattern]	33
12	Israel [ICU, ward]	Sep-Dec, 2016 [2019]	CRAB	M: AF 60, T 30 min; i ~ 1.5m from patient's head at a height of 1 m	10	22 (15.7%) / 140	ND	34

Wong Shuk-Ching, et al. J Hosp Infect. 2021 Oct;116:78-86.

Whole genome phylogenetic analysis of 25 multidrug resistant *Acinetobacter baumannii* (MRAB) genomes showing the relationship between the patients in a medical neurology ward and the ward environment

The tree was constructed by maximum likelihood method with IQ-Tree. The 2018TJAB1 MRAB strain (GenBank assembly accession number GCA_017096365.1) was used as the root of the tree. The substitution model TPM3u+I was used.

Wong Shuk-Ching, et al. J Hosp Infect. 2021 Oct;116:78-86.

Control of MDROs in Hong Kong

MRSA:

Conjoint effort between old age homes & hospitals

CPE:

Source control & education in the community Prevent amplification & transmission in the hospitals

MRAB: Infection control measures in hospitals Alert the risk of air dispersal

Thank You!