

Low temperature sterilization methods: User's perspective?

September 30th

Hervé Ney

Hôpitaux Universitaires Genève SGSV SSSH SSSO

Schweizerische Gesellschaft für Sterilgutversorgung Société Suisse de Stérilisation Hospitalière Società Svizzera di Sterilizzazione Ospedaliera

93.4 liters (73 liters for 100S)

Double door

• Tyvek

- Easy storage, more resistant
- Polypropylene nonwoven sheets

Cycle Sterrad 100 NX

Efficiency

- Action on any type of microorganism with 20 minutes of diffusion of 2 mg/l hydrogen peroxide and 5 minutes of plasma with 300 watts of power
- So, for Standard and Flex cycles, no problem because at least 15 mg/l of hydrogen peroxide and 500 Watts of plasma power

"Empirical" approach by:

- 1- Ensure a SAL of 10⁻⁶ for geobacillus stearothermophilus spores
- 2- Kill > 10⁶ spores on the adjacent surfaces
- 3- Pass the AOAC sporicidy test (official international test method)
- 4- Sterilize instruments with long and narrow lumens

SAL 10⁻⁶ ?

- ISO 14937
- Half cycle method.
- 10⁶ spores per support with a sterilization time equal to half the time required
- Second injection cycle equal to the first at all points, then extrapolation of the destruction kinetics as a function of time, because it cannot be demonstrated
- Tests performed with light instruments

— LE SYSTÈME DE STÉRILISATION STERRAD® 100NX™ —

FIGURE 1

Représentation graphique de la méthode des demi-cycles du stérilisateur^(2, 3)

Représentation graphique du cycle à deux phases

Parametric release

Relationship between pressure and H2O2 concentration

Préparation of the load

- Cleaning, disinfection and <u>drying</u> of MD
- Verification of the compatibility of the instruments (socalled "positive" list established for the establishment)
- Use of packaging and indicators designed for the system
- Limit metal masses. Do not place them against the internal walls, risk of interference
- Place the controls at the bottom of the tank
- Respect the spacing of MD (10% total volume)

VPro[®]

STERIS°

NOUVEAU Plus rapide, plus polyvalent !

 > Cycle endoscopes souples de 35 min
 > Traite les endoscopes chirurgicaux souples à canal unique
 > Traite les endoscopes chirurgicaux souples à canal double
 > Traite 10,89 kg de charge, y compris 1 endoscope chirurgical souple
 > Excellente compatibilité des matériaux avec les instruments à traiter
 > Conception ergonomique

Vos besoins, nos solutions

HNey 30 09 2021 Webinar

AMSCO

V-PRO^{ma}X

Low Temperature Sterilization System

1000

IN-STERIS

VPro[®]

...empêcher les interruptions de cycle

Le système V-PRO* maX est adapté au traitement de matériaux sensibles à l'humidité et à la chaleur, souvent difficiles à sécher complètement. Le processus VHP est conçu pour les éléments électriques qui ne résistent pas à une stérilisation à la vapeur.

...empêcher les dommages au niveau des instruments

Stérilisant à faible concentration

Concentration de 59 % de peroxyde d'hydrogène pour chaque cycle (contre 94 % pour les autres stérilisateurs à basse température), cc qui améliore la compatibilité des matériaux avec les instruments à traiter.

Pas de condensation

Le cycle du système V-PRO* maX empêche la condensation du peroxyde d'hydrogène : la phase gazeuse du H_2O_2 fournit une éradication plus de 10 fois supérieure à celle délivrée par la même concentration sous forme liquide, ainsi qu'une meilleure compatibilité.

...efficacité

Efficacité testée sur un large spectre de pathogènes, dont les spores, les bactéries, les mycobactéries, les virus non enveloppés, les virus enveloppés, les kystes, les champignons et les protozoaires.

Le système de stérilisation V-PRO[®] a été testé en conformité avec le Protocole Standard Prion et il a été démontré qu'il comprend l'inactivation des prions.*

*Le test a été confirmé in vive avec de multiples souchers de prions (y compris variante de la maladie de Creunfeldr Jakob vCJD/encéphalopathie spongilonne bovine BSD) dans les conditions de terr les plus défavorables et en présence/absence de nettorage. Fichet, G. E. Comoy, K. Andoga, C. Duval, G. McDonnell, J.P. Deslys, 2004. Novel methods for disinfection of prion-communicated moduai devices. The Lances 364 : 521-526. Fichet G., K. Andoga, E. Comoy, J.P. Deslys, G. McDonnell (2007). Prion inactination uning a new genoui hydrogen penxide startilianion process. J. Hosp. Infect. 67: 278-386.

- Vaporized Hydrogen Peroxide (VHP) (59%)
 Different steps:
- Conditioning phase
- Optional step of removing residual moisture
- Sterilization
- Ventilation

- 4 sterilization phases
- 1 phase =
- Pressure reduction
- Injection of HPV
- Maintaining
- Filtered air injection
- Maintaining
- Pressure reduction

Non lumen

Rapport Imprimé le 09/02/2015 à 14:39:39

Höpitaux Universitaires de Genève - 4 rue Gabrielle Perret Gentil 1211 GENEVE

STERIS Version 1.06P

Flexible

00:02:26 00:21:54

00:06:43

00:31:03

Т. Pres

49.8 9.8

50.2 10.2 50.9 10.5

48.50 °C

51.50 °C

HC1844W8

03/07/2015

0

15

post injec.

50.2 10.1

Rapport Imprimé le 09/02/2015 à 14:40:39

Höpitaux Universitaires de Genève - 4 rue Gabrielle Perret Gentil 1211 GENEVE

STERIS Version 1.06P

Lumen

Rapport Imprimé le 09/02/2015 à 14:41:49

Höpltaux Universitaires de Genève - 4 rue Gabrielle Perret Gentil 1211 GENEVE

STERIS Version 1.06P

Target values

Cycle Stage	Process Variable	Set Point
Conditioning	Temperature	
	Chamber	50°C
	Vaporizer	60°C
	Pressure	0.53 kPa (4 Torr)
	Time	3 mins
Sterilization	Temperature	
(4 pulses)	Chamber	50°C
	Vaporizer	60°C
	Pressure	
	Pre-injection	0.052 kPa (0.4 Torr)
	Post-injection	0.82-1.95 kPa (6.3-15.0 Torr)
	Post-transition	65 kPa (500 Torr)
	Time	
	Post-injection	6 mins
	Post-transition	2 mins
	Hydrogen Peroxide Concentration	
	VAPROX HC Cartridge	Within Shelf-Life
	VAPROX Injection	8 secs
	Vaporizer Temperature	60°C
	Injection Pressure Rise	0.82-1.95 kPa (6.3-15.0 Torr)
Aeration	Temperature	
	Chamber	50°C
	Pressure	0.13 kPa (<1 Torr)
	Time	6 mins

Parametric release Target values

PQ

A COMPANY OF THE AND A COMPANY OF THE ADDRESS OF THE

STERIS GmbH c/o BDO Längfeldweg 99 CH-2504 Biel Switzerland

Jacoba (DALCS Current Participantia Participanti

18.12.2014

Expert opinion

On 02.12.2014 the initial validation of the V-MAXX PRO sterilizer No. 0326914-07 was carried out in the central sterile supply unit of the Hopitaux Universitaires de Genève; Rue Micheli-du-Crest 24; CH-1211 Genève 14 analogous to DIN EN ISO 14937.

The tests for microbiological and physical performance were performed with the programs "without lumen" "lumen" and "flexible".

The tests were performed in half-cycle and full cycle with plastic PCD's and actual medical devices of the university hospital

Based on the analyzes carried out it can be confirmed that the testing of the device has been successfully completed.

Prof. Dr. med. H.-P. Wemer

H. M. 18 12. 161

аказайдардар стока нало оказа оказа се сей на сей накуу конса са каза се са селата селата селата селата селата с накио конструмата и на оказа селата селат Накиона селата селат Накиона селата селат

021 Webinar

SN EN ISO 14937

BI and CI

Н	Hôpitaux Universitain Genève	ires STERILISATIO			N CENTRALE		SF			30.2 22.03.2021
		1	Dossier de	e stérilisa	ation des d	harges V	H2O2			
Rédigé : A.Brunetti/22	.03.2021	Vérifié : C.	Bréhier/22.03.2021				A	pprouvé :H.Ne	g /22.03.2021	
	Inscrire le	Activer et met e N° de lot indiqu	Contrô tre à incuber ch ié sur le test, *Ve	ile du lot de l'I aque jour un 1 érifier la T°C d	ndicateur Biolog Fest non traité, q le l'incubateur et	jique : <mark>C</mark> ui servira de té la noter systé	émoin po matiquer	sitif, nent sur la	fiche	_
Contr	ôle journalier d « Incubateur /	u test biologique Attest Auto-Read	à lecture rapide er 490H »	9		Contrôle du	test biolo	gique		Remplir au dos
N° lot	Da	ite	Heure	Visa	Date	Heure	+/-	*T°C	Visa	
					1			1.1		Date + N° du
Stérilisate	eur	1	7	(m)	27			12		Stérilisateur
Date	e	N°	cycle		isa chargement		Vis	a décharge	ement	
HEURE :	_h	Indicateur c	Ticket du cycl	e + compositi Test Bio (Cocher	on de la charge logique : X)	Type de cy SAI	ycle de st	érilisation		
		C	ONTENU	J DE LA	CHARG	θE	FLE	κ [
		TICKE	T DES D	DONNE	ES DU C	YCLE				
Contrôle du test	biologique « Ir	cubateur Attest	Auto-Reader 49	OH »	Contrôle	et libération de	la charg	e après 24	minutes	4
N° lot	N° cycle	Date	Heure	Visa	Date	Heure	+/	- *T°C	Visa	
2460 8755	5		2		20030 20280			0 11 22 101 27	2005000	

HNey 30 09 2021 Webinar L'indicateur biologique à utiliser : 3M ATTEST INDICATEUR BIOLOGIQUE A LECTURE RAPIDE 1295 SPORE GEOBACILLUS STEAROTHERMOPHILUS

Compatibility

Medical devices with long and narrow channels

• Positive list validated by the medical device manufacturer and the sterilizer manufacturer

Not compatible

- Liquids: impossibility to achieve a high vacuum
- Foams: impossibility to create a vacuum because too much air
- Anodization (aluminum), polymerization (material assembly glue) or exothermic (magnesium sulfate in some flexible endoscopes) reactions
- Cellulose and derivatives: absorb H2O2 under pressure during the injection and diffusion phases
- Viscose, powders: absorbs H2O2
- Expanded polystyrene: risk of disintegration in the chamber

The high vacuum phase is very important, as it allows to create the conditions for vaporization of hydrogen peroxide on the medical devices of the load (0.2 Torr or 1.35 mbar for Sterrad and 0.4 Torr for the VPRO).

A small amount of residual water is therefore tolerated for the 2 principles

EUROPEAN STANDARD	DRAFT prEN 17180
EUROPÄISCHE NORM	

December 2017

ICS 11.080.10

English Version

Sterilizers for medical purposes - Low temperature vaporized hydrogen peroxide sterilizers - Requirements and testing DRAFT INTERNATIONAL STANDARD ISO/DIS 22441

ISO/TC 198

Voting begins on: 2021-07-19

Secretariat: ANSI

Voting terminates on: 2021-10-11

Sterilization of health care products — Low temperature vaporized hydrogen peroxide — Requirements for the development, validation and routine control of a sterilization process for medical devices

Ethylene Oxyde

Degradation of EO

 With burner or catalyst
 High temperature both

 $2 C_2 H_4 O + 5 O_2 - 4 CO_2 + 4 H_2 O_2$

Ethylene Oxide

Sufficient ventilation

- Areas
 - Air renewals 6 to 10 times per hour
- Storage rooms
- Élimination of EO
 - Burner, catalyst

Maximum 5 mg/m³

- Microorganism of reference
 - $D_{10} \ge 2.5$ min at 54 \pm 1° C for spores Bacillus atrophaeus
- Increase effect with temperature
 40 55 ° C
- Concentration : 300 800 mg/l (EN 1422)

Table of carcinogens

Protection de l'air. O

814.318.142.1

Substance	Formule chimique Classe		
Composés de chrome (VI) (sous forme respirable) en tant que chromate de calcium, chromate de chrome (III), chromate de strontium et chromate de zinc, exprimés en Cr Cobalt (sous forme de poussière ou aérosols respirables de	Cr	2	
cobalt métallique et sels de cobalt peu solubles), exprimés	C	2	
en Co	Co	2	
Dibenzo(a,h)anthracène	$C_{22}H_{14}$	1	
1,2-Dibromoéthane	$C_2H_4Br_2$	3	
1,4-Dichlorobenzène	$C_6H_4Cl_2$	3	
3,3'-Dichlorobenzidine	$C_{12}H_{10}N_2Cl_2$	2	
1,2-Dichloroéthane	$C_2H_4Cl_2$	3	
Suie de diesel		3	
Sulfate diéthyle	$C_4H_{10}O_4S$	2	
1,2-Epoxypropane	C_3H_6O	3	
Epoxyde d'éthylène	C_2H_4O	3	
Ethylène-imine	C_2H_5N	2	
Hydrazine	H_4N_2	3	

- Storage of EO cartridges
 - Cool and dry place
 - température < 30° C and > 21° C
 - Continuous ventilation
 - No refrigering cabinet
 - No smoking area
 - Explosion protection
- In the workplace
 - maximum daily quantity
 - In a ventilated cabinet

Only one user in Switzerland : HUG

• Double door

Catalyst

EO sterilization cycle (5XL de 3M)

Total time : 2:45 h at 55° C, 4:45 h at 37° C

Exposure time : 60 minutes

Load release

Paper record

- in accordance with the reference document Ethylene Oxide content
- cartridge weight before sterilization / after sterilization
 Desorption time
- in accordance with institutional rules and manufacturer's instructions
- **Chemical indicators**
- in accordance with the reference document
- **Biological indicators**
- results in accordance with the reference document Packaging integrity

Hôpitaux Universitaires Genève			STERILISATION CENTRALE DEX					SF002.7 Diffusion : 20.08.2020	
			Dos	sier de sté	rilisation Ch	arges OE			
Température	55°	Stérilisate	eur	15	1	16	2		
Date	N° c	cycle C	artouche 100	g utiles		/isa chargement	Visa	déchargement	Remolir au dos
12150100		P	oids avant (13 oids après (±3	0g +/- 5g) : 0g) :				n de s'entrend salastan passess	Date + N°autoclave
	14	Tick	et du cycle av	vec graphique +	composition de la c	harge	(0)		- N° agent
Date :	ate : Heure : Indicateur chimique : Test bactériologique :								ugont
					(Cocher X)				
			Contenu	de la charge + gr	aphique du cycle				
			Contró	ôle intégrité des	emballages :				
Contrôle du test biologique Contrôle après 4h									C
N° lot	N° cycle	Date	Heure	Visa	Date	Heure	+/- T°	Visa	H SEE
						<u> </u>			
	0		54 5	4	Lib	ération de la char	ie après dés	sorption	
Date	Heu	re Prévisionne	elle de Libérat	ion	Date Heure			Visa	Q ALL
									U
* Exception de te	mps de désor	ption = 10 jou	rs 🗌 🔿	сних	* Libé	ration de la charge	après déso	orption	E

ndicateur à utiliser : Spore bacillus atropheus contrôle du lot à effectuer à chaque changement de boite => inscrire le n° de lot indiqué, écrire un C pour contrôle sur le tube + date sur étiquette Tubes-capsules Groupe Mach = 10 jours désorption, Peluches, livres, cahier = 10 jours désorption, CHUV = min. 10 h. de désorption (pour lundi, mercredi et vendredi matin) HNey 30 09 2021 Webinar

- Opening after the rinsing phase
- Transport of materiel immediately into the desorption chamber
- As short of possible (1 meter)
- Put on gloves to handle the material
- Desorption time depending on the material (48 hours in HUG)

55°C

Desorption rules

- Consider the material that has the longest desorption time
- Faster at 55°C than at 37°C
- At least 8 hours should be respected

Ethylene Oxide and Hydrogen Peroxide Gas Plasma Sterilization: Precautionary Practices in U.S. Hospitals

J. M. Boiano* and A. L. Steege

Treat in one room : USA since 2010

Maximum allowable doses

- SN EN ISO 10993-7 : EO sterilization Residues
- Classifications of MD according to the time of contact with gas
 - Extended exposure :
 - > 24 hours and < 30 days</p>
 - Permanent contact :
 - > 30 days

EO doses

• MD with permanent contact

- The average daily dose of EO should not exceed
 0.1 mg per day
- The maximum dose of EO should not exceed
 - 20 mg in the first 24 hours
 - 60 mg in the first 30 days
 - 2.5 g over the lifetime

Ethylene Chlorohydrate Doses

MD with permanent contact

- The average daily dose should not exceed 2 mg per day
- The maximum dose should not exceed
 - 12 mg in the first 24 hours
 - 60 mg in the first 30 days
 - 50 g over a lifetime

• Ethylene Chlorohydrate is formed by interaction between EO and PVC. Whenever possible, it is recommended that you do not sterilize PVC based MD.

Exposure control

• Monitoring of the air premises

EO Industrial Sterilization

Validation

- IQOQ
- PQ
 - Microbiological
 - Physical
- Review and approval of validation

PQ

 Use a load to demonstrate that the device is operating consistently according to the predetermined criteria and that the process results in a sterile product

• Representative load of the one used routinely

HNey 30 09 2021 Webinar

(5)

HNey 30 09 2021 Webinar

5

PCD

Object that simulates the most unfavorable case of the conditions of obtaining the sterilization specified in the products to be sterilized

Chemical Indicators

ETHYLENE OXIDE INTEGRATOR

MANUFACTURED IN THE UK - D - ALBERT BROWNE LTD

Biological Indicators

Key points

Advantages :

- Effective low temperature sterilization
- Little alteration of the material

Disadvantages :

- Difficult to validate and no parametric release
- Toxic and explosive gas
- Long desorption time
- No proven efficacy against prions

Sterilization with formaldehyde

SN EN 14180

SN EN 15424

Problem

In the current state of knowledge, it is appropriate <u>not</u> <u>to consider</u> that this type of sterilizers is able to inactivate pathogens responsible for CJD

Exactly the same with EO

Characteristics

- Use in the gas phase
 - Very irritating odor, detectable at low concentration:
 01 to 0.5 ppm
 - Vaporized in an aqueaous solution
 - High solubility in water, which explains that it is easy to remove from the sterilizer chamber after sterilization

- Bactericidal effect
 - Similar to EO
 - Alkylation of nucleic acids and action on the proteins
- Action on spores, viruses, fungi
- Beware in case of residual organic maters
 => MD must be clean
- Surface sterilization

Influencing factors

- Concentration
- Temperature
- Humidity
- Exposure time
- Bacterial species
 - Référence : Bacillus stearothermophilus
- Nature of MD component

EN 14180:2014 (F)

HNey 30 09 2021 Webinar

Légende

- 1 Début du cycle
- 2 Début de l'injection de l'agent stérilisant
- 3 Rinçage pendant le cycle
- 4 Indication « cycle terminé »
- 5 Rinçage post-cycle
- 6 Indication « cycle terminé » au moment de l'ouverture de la porte/du déchargement retardés
- 7 Retrait des produits stériles (si nécessaire aération à l'extérieur du stérilisateur)
- 8 Pression ambiante

- a Procédé de stérilisation
- b Cycle de fonctionnement
- c Cycle de stérilisation
- d Temps d'exposition
- e Temps d'égalisation
- f Préchauffage
- g Évacuation de l'air et conditionnement
- h Temps de maintien
 - Désorption
 - Aération

Desorption

Effectiveness of desorption

- Mximum permissible concentration not exceed
 - Test to measure desorption
 - Average value $\leq 200 \ \mu g$
 - Peak value for one piece $\leq 250 \ \mu g$
- Faster than EO
- Beware of rubber, latex, some polyamides

- No wet packages in the sterilized load
- All residuals droplets must be evaporate within 5 minutes
- Drying conformity test

Controls

• Graphic

- Time, temperature, pressure
- Chemical indicator

- Biological indicator
 - Geobacillus stearothermophilus
 - Provided for this type of sterilization process

Balance sheet

• Not recommended in Switzerland

- Complex validation
- IFU of MD manufacturers
Ozone + VH2O2

Using technology that replaces a combination of competitive methods, the 125-litre capacity product combines hydrogen peroxide and ozone to sterilize instruments that were previously difficult or impossible to sterilize. This new-generation product, completed in 2009, is licensed globally by 3M[™] and is commercially available as 3M[™] Optreoz[™] 125-Z in cleared markets.

• Not in Europe : 01 august 2018

STERIZONE® VP4

Sterilux

CLOSED ENVIRONMENT UV UV radiation radiation of 185 nm of 254 nm Oxygen Ozone Oxygen rises hydroxyl radicals in presence of water STERILIZATION

HNey 30 09 2021 Webinar

Many thanks for your attention

Hybrid conference: face-to-face and on line

Register on the wfhss website

- HNey 30 09 2021 Webinar