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Respiratory viruses identified since 1997

Year Cases (deaths / CFR%)

1997 H5N1 18 (6) HK

1999 HIN2 2+ 5 HK & mChina

2001 hMPV Netherlands
2002/3 SARS-CoV 8098 (774) mChina, HK, World
2003/2015 H5N1 844 (449) mChina, HK, World
2003 H7N7 89 (1) Netherlands
2003/07/09 HON2 HK

2004 H7N3 Canada

2004 H10N7 Egypt

2004 NL63 (CoV gpl) Netherlands

2005 HKU1 (CoV gp2) HK

2005 Bocavirus Sweden

2007 HRV-C HK

2009 pHIN1 N America/ HK/World
2012 MERS-CoV >1500 (40%) Middle East
2013/2018 H7N9 >1300 (30%) mChina/ HK
2019/2020 SARS-CoV2 >66M (>1.5M) mChina/HK/World



Coronavirus
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e 7CoVs can infect human
- 4 cause common cold
- 2 cause severe pneumonia
- SARS-CoV2 cause both

Nat Rev Microbiol 2020 Oct 28;1-16. doi: 10.1038/s41579-020-00468-6



A

HCoVs 229E, 0C43,
NL63, HKU1

* Mild cold symptoms
* Replication in nasophal
¢ Rapidly waning immuni

with frequent reinfection

SARS-CoV-2 ERS-CoV, SARS-CoV

* Asymptomatic to severe *$evere pneumonia
pneumonia * Replication in lower respiratory tract

nx e Replication throughout * Yong-lived memory T cell response, _— 17 years (T memory)

respiratory tract antibody longevity proportional
* Unknown duration of immunity / to disease

—> 2-3 years (B memory)

Memory T cells
of SARS patient
cross-react with
SARS-CoV2 N protein

)

Lz

§ SARS-CoV/MERS-CoV T cells

0

P SARS-CoV/MERS-CoV antibodies in
severe disease
MERS-CoV antibodies in mild disease

Common cold CoV antibodies

Years post-infection

Nature 2020; 584:457
Immunity 2020; 53: 248



Cell

Targets of T Cell Responses to SARS-CoV-2
Coronavirus in Humans with COVID-19 Disease and
Unexposed Individuals

Graphical Abstract In Brief

An analysis of immune cell responses to
SARS-CoV-2 from recovered patients

CoviD19 | gﬁ. - IGA identifies the regions of the virus that is
—Y : : " targeted and also reveals cross-reactivity
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Measuring immunity to SARS-CoV-2 is key for
understanding COVID-19 and vaccine development

e Epitope pools detec 8" T cells in 100% and
70% of convalescent COVID patients

Co4 x e Tcell responses are focused not only on spike but also on M,
7 “‘w | N, and other ORFs

_ e T cell reactivity to SARS-CoV-2 epitopes is also detected in
e — ' ' h non-exposed individuals

comman cold
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Herd Immunity, R, and Deaths
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Clinical disease presentations of COVID-19

A

ations:
complications
tory distress
e (ARDS)
inflammatory
in children (MIS-C)

COVID-19 disease

Typical presentations:
Fever

Dry cough

Exhaustion : .

Anorexia S ulti-organ failure
Smell and taste disorder i\ ]

Myalgia

Shortness of breath

Less frequent presentations: Co-morbidities associated
Nausea with severe presentations:
Diarrhea Cardiovascular diseases
Sore throat | Diabetes

Rhinorrhea Hypertension

Headache | Chronic lung illness
Cutaneous manifestations _\ Kidney disease

J Immunol 2020
doi/10.4049/jimmunol.2000526



ACE2 Expressions

(transmembrane protease serine 2, TMPRSS2)

ACE2 expression
I High
[ Intermediate
Minor
[] None/indeterminate

« ACE2 has not been detected in the
brain, except in blood vessels.

Heart

* ACE2 increased in patients with
heart failure.

« Troponin, BNP, and D-dimer
identify patients at risk for cardiac
complications.

Lungs

* ACE2 expression higher in smokers.

« Severity of lung damage correlates
with CRP, IL-4, IL-6 and N/L.

Liver
« ACE2 only found in cholangiocytes.

Kidneys

« ACE2 widely expressed.

* Urine potassium possible indirect
marker for ACE2 function.

Intestines
* ACE2 expression enriched on
enterocytes of the small intestine.

Testis

Vasculature

| «» Complications correlate with
elevated D-Dimer levels, PT and
aPTT prolongation, and increased
fibrin degradation products.

Figure 5. ACE2 Expression in Organs and
Systems Most Frequently Implicated in
COVID-19 Complications

The gastrointestinal tract, kidneys, and testis have
the highest ACE2 expressions. In some organs,
different cell types have remarkably distinct ex-
pressions; e.g., in the lungs, alveolar epithelial cells
have higher ACE2 expression levels than bronchial
epithelial cells; in the liver, ACE2 is not expressed
in hepatocytes, Kupffer cells, or endothelial cells
but is detected in cholangiocytes, which can
explain liver injury to some extent. Furthermore,
ACEZ2 expression is enriched on enterocytes of the
small intestine compared to the colon.

ACE2, angiotensin-converting enzyme 2; BNP, B-
type natriuretic peptide; CRP, C-reactive protein;
IL, interleukin; N/L, neutrophil-to-lymphocyte ratio;
PT, prothrombin time; aPTT, activated partial
thromboplastin time.

Immunity 2020; 52: 910



Figure 2. SARS-CoV-2 Infection Results in
+ Type 1 IFN Myeloid Cell Activation and Changes NK
T TNF-a, IL-6/1/18 Cell Function
Based on data from preliminary COVID-19 studies
and earlier studies in related coronaviruses.
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Peripheral blood
T cell counts

J Gregory ©2020 Mount Sinai Health System
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Cell

Antigen-Specific Adaptive Immunity to SARS-CoV-2
in Acute COVID-19 and Associations with Age and

Disease Severity

Graphical Abstract
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In Brief

Analysis of SARS-CoV-2-specific
adaptive immune responses during acute
COVID-19 identifies coordination
between SARS-CoV-2-specific CD4

T cells and CD8 T cells to limit disease
severity. Aged individuals often exhibit
uncoordinated adaptive responses,
potentially tied to scarcity of naive T cells,
highlighting immunologic risk factors
linked to disease severity.

Highlights

e Adaptive immune responses limit COVID-19 disease severity

e Multiple coordinated arms of adaptive immunity control
better than partial responses

e CXCL10 may be a biomarker of impaired T cell responses in
acute COVID-19

e Aging and scarcity of naive T cells may be linked risk factors
for severe COVID-19

Cell 12 November 2020; 183:1



Cell

Imbalance of Regulatory and Cytotoxic SARS-CoV-2-
Reactive CD4"* T Cells in COVID-19

Graphical Abstract In Brief

COVID-19 patients
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18 non-hospitalized patients 22 hospitalized patients
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Analyses of CD4* T cells from 40 COVID-
19 patients show that hospitalization is
associated with increased cytotoxic
follicular helper cells and cytotoxic T
helper cells and a reduction in regulatory
T cells.

Highlights
e Single-cell transcriptomic analysis of >100,000 SARS-CoV-
2-reactive CD4" T cells

e Strong cytotoxic Ty response in hospitalized patients early
in the illness

e Reduced proportions of regulatory CD4* T cells in
hospitalized patients

e Substantial heterogeneity in the molecular profile of viral-
reactive CD4* T cells

Cell 25 November 2020: 183:1



Figure 4. Antibody-Mediated Immunity in

SARS Antib O dy an d ﬁ;?unstss-;ﬁ:;;:zlgm and IgG are detectable in serum

between 7 and 14 days after the onset of symp-

|\/I toms. Viral BNA is inversely correlated with
emory B cells are neutralizing antibody titers. Higher titers have been

° observed in critically ill patients, but it is unknown
ShOl‘t llVed (1 '2 yeal‘S) whether antibody responses somehow contribute

to pulmonary pathology. The SARS-CoV-1 hu-
moral response is relatively short lived, and
memory B cells may disappear altogether, sug-

gesting that immunity with SARS-CoV-2 may wane
1-2 years after primary infection.

IgG/Nab
CoV-2 RNA W

-

- memory B cells?

day 5 post exposure day10-15 day21 1-2 years
Resolution
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Immunity 2020; 52: 910



Longevity of the neutralizing antibody response

Mild

Severe

Days POS

Post Onset of Symptoms

Nat Microbiol 2020 Oct 26. doi: 10.1038/s41564-020-00813-8



Why COVID-19 humoral immunity so short-lived?
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Genetic basis of severe COVID-19

Critical, atypical

with risk factors

of COVID-19
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Six COVID-19 Vaccine Platforms

BCG

Live
attenuated
virus

Protein
subunit

Virus-like
particles

Inactivated
virus

Recombinant
viral vectored

Nucleic
acid based

Preclinical development

. Clinical development

Nature Reviews in Immunology 2020;20:615
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BCG Educates Hematopoietic Stem Cells to
Generate Protective Innate Immunity against
Tuberculosis

Graphical Abstract In Brief
BCG induces trained immunity through
education of hematopoietic stem cells.

Highlights
e Access of BCG to the bone marrow expands HSCs and
promotes myelopoiesis

FBS-iv BCG-iv

BGG:v enhancad e BCG educates HSCs to generate trained monocytes/

macrophages

51|80 LWE]S JneduewEy

e BCG induces a unique epigenetic and transcriptomic

f ; signature in macrophages
epigenetic profiles

e BCG-trained macrophages are highly protective against

e
' pulmonary M. tuberculosis infection

Differences in
response fo infection

-

(maowa) sebeydaioely peausp mouew suog

Improved bacterial
clearance

Cell 11 January 2018: 172:176



Trained immunity as a
potential COVID-19 vaccine strategy

* BCG vaccination endows circulating monocytes
with characteristics of trained immunity
through epigenetic and metabolic rewiring of
myeloid progenitors in the bone marrow

* These trained monocytes enhance protection

against heterologous infections, including
respiratory viral infection

Nature Reviews in Immunology 2020;20:615



Trained immunity elicited by BCG immunization

om -}
SPECIFIC ADAPTIVE
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Trained Immunity

REDUCTION OF
CHILDREN MORTALITY
Malaria, Sepsis,
Respiratory infections,
Leprosy.
non-specific
pathogens

YFV
S. aureus
C. albicans

C. albicans

EPIGENETIC
MODIFICATIONS

Promoters of
TNFA,IL6, IL1B

Frontiers in Immunology 2020; 11:970



Protective role of BCG in SARS-CoV-2 infection
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Approaches to investigate BCG NSEs

Design of In vitro models Immune profiling of NSEs through systems biology (-omics studies) Implementation in
to study NSEs and targeted trials (confirmation of biomarkers) clinical settings

Demonstrating effects Metabolomics Epigenomics Narrowing down
of}?eter(.)logous' or Glycolysis enhancement Histone marks modification to find In vivo
trained immunity Production of metabg \ s profiling An 3K 4me3; HIK27Ac biomarkers

through cell effector mmune profiling anc —~ 3

—omics signatures

functions

Frontiers in Immunology 2018; 9:2869



Six COVID-19 Vaccine Platforms

BCG

Live
attenuated
virus

Protein
subunit

Virus-like
particles

Inactivated
virus

Recombinant
viral vectored

Nucleic
acid based

Preclinical development

. Clinical development

Nature Reviews in Immunology 2020;20:615



Structural Vaccinology
Example 2 (Respiratory Syncytial Virus, RSV)

= Can now use 3D knowledge of protein structure to design new vaccine antigens with optimized biological
and immunogical features'

= E.g. design of RSV F antigen engineered as stable pre-fusion conformation?

Same protein,
different conformation

Pre-fusion F
McLellan J et al. (2)

Post-fusion F

Swanson K et al. (3)

Jormitzer PR et al. Nat Rev Microbiol; 2012;10:807-813. |2. MclLellan J et al. Science. 2013;342;592-598. 3. Swanson K et al. PNAS. 2011;108:9619-9624.

Pre-fusion S protein for COVID-19 vaccine
Courtesy of Dr. Philippine Buchy



Non-viral delivery of self-amplifying mRNA vaccines

CNE

5

%
iy
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™
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RNA

LNP: lipid nanoparticle (zwitterionic lipid 10%, cationic lipid 40%, cholesteral 48%, PEGylated lipid 2%)
CNE: cationic nanoemulsion (buffer and Tween 80 with an il phase containing Span 85, DOTAP [1,2-dioleoyl-sn-glycero-3-phosphocholing], and squalene)

Geall AJ et al. Proc Matl Acad Sci USA 2012; 109 14604-14609, Brito LA et al. Mol Ther 2014; 22: 2118-29,

Courtesy of Dr. Philippine Buchy



Advantages of mRNA vaccines over other nucleic acid-
based vaccines

BNT/Pfizer
ChAdOx1
. Moderna
Viral vectored MRNA vaccines DNA vaccines
& live vaccines

* No eukaryotic cell

* Eukaryotic cell culture

| ' culture « Chromosomal
« Anti-vector immunity g rBr:adnT and B cel . Standardized integration
esponses :
» Infectious particles P production * Poor efficacy

\-.\‘_- Rapid response

Courtesy of Dr. Philippine Buchy



COVID vaccine design

1. Selection of SARS-CoV?2 antigens

« For SARS-CoV, only antibodies directed to
S protein can neutralize virus

 All vaccines in development include at least
a portion of S, such as S1 or RBD

* Inclusion of other antigens, such as N
protein and/or other non-structural proteins
may help create a balanced response
involving both B and T CMI, (especially the
highly conserved function proteins may
target emerging viral strains)

Nature Review Immunology 2020; 20:633



COVID vaccine design

2. Vaccine platforms
* 6 platforms
 Vaccine require 2 components:
Antigens of SARS-CoV2
Infection signal (PAMP, DAMP)

 For non-viral vaccine platform, will need
adjuvants as infection signal and may need
multiple doses

Nature Review Immunology 2020; 20:633



COVID vaccine design

3. Vaccination routes and regimens

* IM route gives rise to protective IgG and can appear
at respiratory mucosa, but not eftective to induce
mucosal IgA or lung tissue-resident memory T cells

(TRM)

* Inactivated virus, protein subunit and nucleic acid
vaccines cannot be delivered by respiratory mucosal
route as they need adjuvants which may be unsafe
for such route

 Human serotype 5 adenovirus (AdS) or chimpanzee
derived adenovirus (ChAd) safe and etfective for

mucosal route
Nature Review Immunology 2020; 20:633



Vaccine-associated enhancement of
respiratory diseases (VAERD)

 YVAERD observed in children received

whole-inactivated measles & RSV in
1960°s

* Antibody-mediated (non-neutralising)
* T helper 2 biased response

Science 2020; 368:945



Six COVID-19 Vaccine Platforms

 High
| neutralising
Pubunt iretbecdred antibody titers
* T helper 1
response

Nature Reviews in Immunology 2020;20:615
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COVID-19 vaccine candidates in clinical trials

Vaccine

BNT162b1°

ChAdOx1
nCov-19
(AZD-1222)2

PiCoVacc

NVX-
CoV2373e

Platform

Lipid
nanoparticle-
mRNA

ChAd-
vectored,
non-
replicating

Inactivated
SARS-CoV-2

Protein
subunit

Developer

BioNTech, Pfizer,

Fosun Pharma

University
of Oxford,
AstraZeneca

Sinovac Biotech

Novavax

Clinical
trial
phase

Phases HII;
dose- and
candidate-
findingin
Germany,
USA and
China

Phases |-l
in UK,
South
Africa,
USA and
Brazil

Phases HII;
phase lll in
China and
Brazil

Phases |
andllin
Australia

Immunization
attributes

RBD of

S protein;
two repeated
doses of IM
injection

Expressing

S protein;
single dose or
two repeated
doses of IM

injection

Multiple viral
antigens;
two repeated
doses of IM

injection

Recombinant
S protein;
two repeated
doses of IM

injection

Nature Reviews in Immunology 2020;20:615

Preclinical
data

Published data
from mouse
model showing
strong antibody
and T cell
responses

Published
datashowing
prevention of
pneumonia
but not
transmission in

NHPs

Published
data from NHP
model showing
protection

Unpublished
information
indicates
high levels
of S-specific
neutralizing
antibodies

Clinical data

Submitted
report indicating
safety, high
neutralizing
antibody titres
and T,,1 cell-type
CD4*and CD8*

T cell responses

Published

data showing
safety and good
ihd uction of
neutralizing
antibodies and
T cell activation
in >90% of
vaccinees
Interim phase /Il
information
released
toindicate
safety and
immunogenicity
NA



Preliminary Phase 3 trials result

For both mRNA candidate vaccines from
BNT/Pfizer & Moderna, 95% & 94.5% efficacy
after 2 doses

For ChAd candidate vaccine from Oxford
U/AstraZeneca, 62 to 90% efficacy after 2 doses

Only short term and summary data known through
press release

These vaccines NEVER used in large scale in human
Implementation issues, such as equity cost & storage
Durability of B&T cell memory

Monitor of rare SAEs



Intranasal route better to generate

IgA & Lung resident T cells
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No lung infection
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Cell doi.org/10.1016 /j.cell.2020.08.026



Phased implementation of COVID-19 vaccine

\
I
I
1

Priority vaccination

A ‘pandemic vaccine’ or a vaccine !
fully validated from the
‘rationalized vaccine pipeline’ to !
be offered to high-risk populations
first owing to limited supplies

* Health-care workers

* |ndividuals with co-morbidities
* Seniors

* Ethnic minorities

' Mass vaccination

» The best vaccine strategies |
identified from the rationalized .
vaccine paradigm )

» Regional immunization owingto |
limited distribution :

m-RNA
Viral-vectored  * Continentl

s Global

Inactivated whole virus

s Worldwide immunization

Pandemic vaccine paradigm

Py— Protein subunit & whole virus

Rationalized vaccine paradigm

10-15 years

Nature Reviews in Immunology 2020;20:615
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