

COVID-19 Cardiac & Thoracic Imaging Dr Ming-Yen Ng Clinical Assistant Professor The University of Hong Kong

100m

• Received funding from Bayer and Circle Cardiovascular Imaging

Contents

Thoracic Imaging – CXR, CT & ultrasound

Cardiac Imaging – CT & MRI

] LKS Faculty of Medicine Department of Diagnostic Radiology ② 香港大學放射診斷學系

What are the appearances of COVID-19 on thoracic imaging?

Initial CT Images of COVID-19

Huang, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China The Lancet 2020

J Chan, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster The Lancet 2020

Characteristic Appearances

= 21 Patients

Hong Kong

Shenzhen

Characteristic Appearances

MY Ng, et al. Radiology: Cardiothoracic Imaging 2020

Radiology: Cardiothoracic Imaging

COVID-19 vs other pathogens

1. MY Ng, et al. Radiology: Cardiothoracic Imaging 2020; 2. S Altmayer, et al. European Radiology 2020

CT - Temporal Changes

Ground-glass opacities evolve into consolidation

New ground glass changes

MY Ng, et al. Radiology: Cardiothoracic Imaging 2020

CXR - Temporal Changes

Consolidation/ ground glass worsens then improves

MY Ng, et al. Radiology: Cardiothoracic Imaging 2020 Radiology: Cardiothoracic Imaging

Systematic Review of Papers

HKU LKS Faculty of Medicine Department of Diagnostic Radiology 香港大學放射診斷學系

	Current Study	Chen et al[5]	Huang et al[6]	M Chung et al.[7]	Song et al.
No. of Patients	21 patients	99 patients	41 patients	21 patients	51 patients
Age	56 years	Mean 55.5 years (SD:13.1)	Median 49 years	Mean 51 years	Mean 49
	(IQR 37-65years old)		(IQR: 41-58)	(range: 29-77years)	(range 16-76 years)
Imaging Modality	CT & CXR	CT & CXR	CT only	CT only	CT only
CXR Findings					
Consolidation	60%	100%			
Pleural Effusion	0	N/A			
Normal CXR	2	0			
CT Findings					
Time Between Onset & 1 st CT	me Between Onset & 1 st CT Median 3 days (IQR 1-7 days)		8 days	N/A	Classified as (i) ≤4 days or (ii) >4days
Consolidation	onsolidation 62%		Typically present	29%	59%
Ground Glass	86%	14%	Typically present	86%	77%
Predominant Distribution	Peripheral (86%) Lower Zone (38%) Similar Upper & Lower Zone (38%)	Bilateral (75%)	Bilateral (98%)	Peripheral (33%) Bilateral (76%)	Peripheral (86%) Bilateral (86%) Lower lobes (90%)
Lymphadenopathy	0%	N/A	N/A	0%	6%

HKU LKS Faculty of Medicine Department of Diagnostic Radiology MCO 香港大學放射診斷學系

Subsequent Publications

CT Temporal Change

Ground-glass opacities

9-13 days from symptoms onset Dense consolidation

≥14 days from symptoms onset Subpleural parenchymal bands

Agricola, et al. JACC Imaging 2020

Less Common Features

Confirmatory Publications

Ai et al. Radiology 2020

Bernheim et al. Radiology 2020

Chest X-rays

ORIGINAL RESEARCH • THORACIC IMAGING

Radiology

Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19

Ho Yuen Frank Wong, MBBS • Hiu Yin Sonia Lam, MBBS • Ambrose Ho-Tung Fong, BS • Siu Ting Leung, MBBS • Thomas Wing-Yan Chin, MBBS • Christine Shing Yen Lo, MBBS¹ • Macy Mei-Sze Lui, MBBS • Jonan Chun Yin Lee, MBBS • Keith Wan-Hang Chiu, MBBS • Tom Wai-Hin Chung, MBBS • Elaine Yuen Phin Lee, MBBS • Eric Yuk Fai Wan, PhD • Ivan Fan Ngai Hung, MBBS • Tina Poy Wing Lam, MBBS • Michael D. Kuo, MD • Ming-Yen Ng, MBBS

CXR Paper in Radiology

CXR Paper in Radiology

HYF Won	g, et al.	Radiology	2020
---------	-----------	-----------	------

Characteristic	No. of Findings
No. of normal baseline chest radiographs	20 (31)
No. of abnormal baseline chest radiographs	44 (69)
No. of patients with normal baseline chest radiographs later becoming abnormal	7 (11)
Type of parenchymal opacity at baseline chest radiography	
Consolidation	30 (47)
Ground-glass opacities	21 (33)
Distribution at baseline chest radiography	
Peripheral predominant	26 (41)
Perihilar predominant	6 (9)
Neither peripheral nor perihilar	19 (30)
Right lung	10 (16)
Left lung	9 (14)
Bilateral lungs	32 (50)
Upper zone predominant	0 (0)
Lower zone predominant	32 (50)
No zonal predominance	19 (30)
Other features on baseline chest radiographs	
Pleural effusion	2 (3)
Pulmonary nodules	0 (0)

Note.—Data in parentheses are percentages; percentages were calculated on the basis of 64 patients.

CXR Paper in Radiology

HKU LKS Faculty of Medicine Department of Diagnostic Radiology MCO 香港大學放射診斷學系

What is the Diagnostic Accuracy of CT?

COVID-19 Scoring System

CO-RADS	Level of Suspicion for Pulmonary	Summary
Category	Involvement of COVID-19	

COVID-19 Reporting System

Schalekamp, et al. Radiology 2020

COVID-19 Reporting System

CT performed better with symptom duration of \geq 48 hrs of symptoms

COVID-19 Reporting System

Table 2: Imaging Classification and CT Features of COVID-19 Pneumonia				
Imaging Classification	Rationale	CT Features		
Typical appearance	Commonly reported imaging features of greater specific- ity for COVID-19 pneumonia	 Peripheral, bilateral, ground-glass opacities with or without consolidation or visible intralobular lines ("crazy-paving" pattern) Multifocal ground-glass opacities of rounded morphology with or without consolidation or visible intralobular lines (crazy-paving pattern) Reverse halo sign or other findings of organizing pneumonia (seen later in the disease) 		
Indeterminate appearance	Nonspecific imaging features of COV- ID-19 pneumonia	 Absence of typical features AND the presence of the following features: multifocal, diffuse, perihilar, or unilateral ground-glass opacity with or without consolidation lacking a specific distribution and that are nonrounded or nonperipheral Few small ground-glass opacities, with a nonrounded and nonperiph- eral distribution 		
Atypical appearance	Uncommonly or not reported features of COVID-19 pneu- monia	Absence of typical or indeterminate features AND the presence of the following features: isolated lobar or segmental consolidation without ground-glass opacities; discrete small nodules (centrilobular, "tree-in-bud" appearance); lung cavitation; smooth interlobular septal thickening with pleural effusion		
Negative for pneumonia	No features of pneu- monia	No CT features to suggest pneumonia.		

Kwee & Kwee. Radiographics 2020
 S. Simpson, et al. Radiology Cardiothoracic Imaging 2020

HKU LKS Faculty of Medicine Department of Diagnostic Radiology MCO 香港大學放射診斷學系

Why do some centres prefer CXR or CT?

• Cleaning of the scanners

LKS Faculty of Medicine

- Room cannot be used for ~30 minutes (dependent on air-exchange rate)
- Impacts on regular CT lists
- Availability of scanners

Obtaining CXR - Portable

- Room cleaning not required
- CXR less sensitive than CT
- Less impact on radiology work-flow

M. Mossa-Basha, et al. RSNA COVID-19 Task Force: Best Practices for Radiology Departments during COVID-19. 2020

CTPA for Pulmonary Embolism

Figure 2: A, B, Axial and, C, D, coronal pulmonary CT angiography images in a 76-year-old African American man with body mass index of 37 kg/m² who required admission to medical intensive care unit for acute respiratory failure secondary to coronavirus disease 2019 confirmed with reverse transcriptase polymerase chain reaction. Pulmonary CT angiography was obtained 4 days after admission and demonstrates acute pulmonary embolism in right lower lobar pulmonary artery (white arrows), bilateral ground glass opacities (black arrows), and consolidation (arrowheads).

1. Poyiadji et al. Radiology 2020; 2. Kaminetzky et al. Radiology: Cardiothoracic Imaging 2020

Role of CT Pre-Screening in Surgery HKU Med LKS Faculty of Medicine Department of Diagnostic Radiology 香港大學放射診斷學系

Table 1 Summary of findings in studies using preoperative CT Chest screening in a surgical setting

		No of patients				
Author	Month of Publication	undergoing Chest CT	Positive on CT	Positive on RT-PCR	Remarks	
Callaway et al ³	June	677	90(13-49%)	13/643(2·02%)	Sensitivity- 68.4%, Specificity- 88%, Disease prevalence- 2.95% Difficult to justify this additional examination.	
Chetan <i>et al</i> ⁴	June	439	32(7·28%)	7(1.59%)	Altered surgical management in 7% of the elective surgical cohort, but not in the acute abdominal emergency cohort requiring surgery.	
Hernigou et al ⁵	July	298	16(5-36%)	20/227(8-81%)	Chest CT scan is no longer useful outside the pandemic period	
					Most accurate diagnostic test for COVID-19 pneumonia in patients who needed surgery in emergency Useful in patients who had a previous symptomatic infection with recovery and may have pulmonary sequels	
Huybens et al6	July	374	18(4.81%)	3(0.80%)	CT chest has no added value in a low prevalence population.	
lkehara et al ⁷	July	21	2(9.52%)	0	54% of asymptomatic patients have Pneumonic changes on CT, chest CT screening before procedural endoscopy may contribute to identify COVID-19 patients.	
Shah et al ⁸	July	625	105(16.8%)	1(0-16%)	Chest CT scanning did not provide valuable information in detecting asymptomatic cases of COVID-19 in low prevalence populations.	

V. Agrawal, et al. British Journal of Surgery 2020

Issues withs CT Pre-Screening

Delays Surgery

Safety of Radiology Staff


```
Increased Treatment Cost
```


Decontamination of Scanner

HKU LKS Faculty of Medicine Department of Diagnostic Radiology MCO 香港大學放射診斷學系

Lung Ultrasound

Normal Lung

G Volpicelli. J Ultrasound Med 2013

G Volpicelli. J Ultrasound Med 2013

Zhang et al. AJR 2020

TABLE 1: Lung Ultrasound (US) Findings in Patients Classified by Duration of Symptoms

Lung US Finding	Early ($n = 9$)	Intermediate ($n = 9$)	Late (<i>n</i> = 10)	Total (<i>n</i> = 28)
A-lines ^a	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
B-lines	9 (100.0)	9 (100.0)	10 (100.0)	28 (100.00)
Thickened pleural line	1 (11.1)	6 (66.7)	10 (100.0)	17 (60.7)
Pulmonary consolidation	6 (66.7)	6 (66.7)	7 (70.0)	19 (67.9)
Pleural effusion	1 (11.1)	0 (0.0)	0 (0.0)	1 (3.6)

Note—The duration of symptoms from initial onset to lung US was classified as early (< 20 days), intermediate (20–30 days), or late (> 30 days). Data are reported as number (%) of patients.

^aOnly A-lines were visualized.

A. Nouvenne, et al. Respiration 2020

HKU LKS Faculty of Medicine Department of Diagnostic Radiology MCO 香港大學放射診斷學系

COVID-19: Cardiac Imaging

What's the excitement?

JAMA Cardiology | Original Investigation

Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19)

Valentina O. Puntmann, MD, PhD; M. Ludovica Carerj, MD; Imke Wieters, MD; Masia Fahim; Christophe Arendt, MD; Jedrzej Hoffmann, MD; Anastasia Shchendrygina, MD, PhD; Felicitas Escher, MD; Mariuca Vasa-Nicotera, MD; Andreas M. Zeiher, MD; Maria Vehreschild, MD; Eike Nagel, MD

> tricular ejection fraction, higher left ventricle volume and mass, and raised native T1 and T2 measures. A total of 78 patients recently recovered from COVID-19 had abnormal CMR findings, including raised myocardial native T1 (n = 73),²¹ raised myocardial native T2 (n = 60),²² myocardial LGE (n = 32), and pericardial enhancement (n = 22) (Figure 1). A total of 12 pa-

What is LGE?

Infarct

Dilated Cardiomyopathy

HYPERENHANCEMENT PATTERNS

What is T1 and T2 Mapping?

Multiple TI images acquired at different times

T1 Mapping

- Two types native T1 and extracellular volume
- Native T1 quantifies tissue characteristics
- Does not rely on subjective interpretation
- Infers presence of fibrosis, oedema and/ or infiltration

T2 Mapping

- Quantifies T2 values and not subjective
- Measures water/ oedema

V Puntmann, et al. JAMA Cardiology 2020

Intracellular oedema and acute lymphocytic infiltration was present

Corrections

Comment & Response

August 25, 2020

Errors in Statistical Numbers and Data in Study of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From COVID-19

Eike Nagel, MD¹; Valentina O. Puntmann, MD, PhD¹

» Author Affiliations | Article Information

JAMA Cardiol. 2020;5(11):1307-1308. doi:10.1001/jamacardio.2020.4661

CMR in COVID-19 – 1st Paper

TABLE 2 Left and Right Ventricular Cardiac CMR Parameters of Patients Recovered From COVID-19 and Controls									
	Conventional	CMR Findings							
	Positive (n = 15)	Negative (n $=$ 11)	Controls (n = 20)	Adjusted p Value†	Adjusted p Value‡	Adjusted p Value§	p Value*		
Age (yrs)	39 (29-49)	37 (34-39)	40 (29-50)	0.83	0.99	0.69	0.78		
Male	4 (27)	6 (55)	7 (35)	0.30	0.50	0.88	0.34		
CMR parameters									
Left ventricle									
EF (%)	$\textbf{60.7} \pm \textbf{6.4}$	$\textbf{64.3} \pm \textbf{5.8}$	$\textbf{63.0} \pm \textbf{8.9}$	0.30	0.65	0.86	0.40		
EF<50%	1 (7)	0 (0)	0 (0)	NA	NA	NA	NA		
EDV (ml)	71.6 (61.4-86.4)	78.2 (64.0-92.1)	86.1 (70.8-92.8)	0.59	0.30	0.91	0.31		
ESV (ml)	$\textbf{28.7} \pm \textbf{8.6}$	$\textbf{28.2} \pm \textbf{7.9}$	$\textbf{30.3} \pm \textbf{10.3}$	0.98	0.89	0.81	0.80		
SV (ml)	$\textbf{43.5} \pm \textbf{8.0}$	$\textbf{49.9} \pm \textbf{8.7}$	$\textbf{50.2} \pm \textbf{12.1}$	0.16	0.13	>0.99	0.10		
CO (l/min)	3.0 (2.6-3.7)	3.7 (3.5-4.5)	3.5 (2.8-4.3)	0.05	0.88	0.32	0.05		
Myo mass (g)	$\textbf{57.1} \pm \textbf{12.4}$	$\textbf{69.1} \pm \textbf{17.2}$	$\textbf{63.9} \pm \textbf{14.7}$	0.15	0.31	0.68	0.14		
EDV/BSA (ml/m ²)	$\textbf{43.9} \pm \textbf{10.7}$	$\textbf{44.1} \pm \textbf{6.7}$	$\textbf{47.3} \pm \textbf{10.1}$	>0.99	>0.99	0.93	0.49		
ESV/BSA (ml/m ²)	$\textbf{17.5} \pm \textbf{5.6}$	$\textbf{15.9} \pm \textbf{4.1}$	$\textbf{18.0} \pm \textbf{6.8}$	0.68	0.96	0.52	0.58		
SV/BSA (ml/m ²)	$\textbf{26.4} \pm \textbf{6.2}$	$\textbf{28.2} \pm \textbf{4.0}$	$\textbf{29.3} \pm \textbf{5.5}$	0.64	0.34	0.81	0.29		
CI (l/min/m ²)	$\textbf{1.9} \pm \textbf{0.5}$	$\textbf{2.3} \pm \textbf{0.4}$	$\textbf{2.0} \pm \textbf{0.5}$	0.15	0.84	0.30	0.19		
Myo mass/BSA (g/m ²)	34 3 + 71	387+66	374 + 71	0.26	0.41	0.87	0.24		
Global T1 (ms)	1,271 (1,243-1,298)	1,237 (1,216-1,262)	1,224 (1,217-1,245)	0.03	0.002	>0.99	0.002		
Global T2 (ms)	$\textbf{42.7} \pm \textbf{3.1}$	$\textbf{38.1} \pm \textbf{2.4}$	$\textbf{39.1} \pm \textbf{3.1}$	<0.001	0.005	0.57	<0.001		
Global ECV (%)	28.2 (24.8-36.2)	24.8 (23.1-25.4)	23.7 (22.2-25.2)	0.12	0.001	0.84	0.002		

Huang, et al. JACC Imaging 2020

CMR & Athletes with COVID-19

Table. Demographic Features and Echocardiographic and Cardiovascular Magnetic Resonance Parameters in Competitive Athletes Recovering From Coronavirus Disease 2019^a

		x Symptoms	Time CMR performed after positive test ms result, d	Echocardiography, mL/m ²		CMR, %	Native T1		Maximal T2 me		CMD (undated Lake		
Athlete No.	Sex			LVEDV	RVEDV	LVEF	RVEF	ms	ECV, %	(AHA segments)	LGE (pattern/AHA segments)	Louise Criteria)	
1	Male	No	21	Not done	Not done	60	49	1034	21	51 (9)	Yes (RV insertion; 9)	Normal	
2	Male	No	22	51	46	56	59	964	24	48 (9)	Yes (patchy; 6, 8)	Normal	
3	Male	No	22	65	60	60	64	953	22	48 (10)	Yes (patchy, 5)	Normal	
4	Male	No	15	65	48	59	54	905	20	48 (9)	Yes (linear; 8, 12)	Normal	
5	Male	No	17	66	57	55	54	994	24	55 (9)	Yes (epicardial; 3, 9)	Myocarditis	
6	Male	Yes	23	73	52	61	62	947	26	63 (3, 9)	Yes (patchy; 3, 9)	Myocarditis	
7	Male	Yes	53	66	64	53	52	991	25	49 (7, 9)	Yes (linear, patchy; 8, 9, 12)	Normal	
8	Male	No	20	76	36	56	53	963	17	51 (10)	No	Normal	
9	Male	Yes	18	60	71	56	52	964	24	52 (7)	Yes (patchy; 3, 9)	Normal	
10	Male	Yes	11	67	70	61	58	929	25	58 (8, 9)	Yes (patchy; 2, 3, 8, 9)	Myocarditis	
11	Male	No	23	57	49	63	60	987	22	53 (7)	No	Normal	
12	Male	Yes	28	72	59	50	53	966	28	53 (7, 8)	No	Normal	
13	Male	No	28	81	52	33	53	925	25	53 (7, 8)	No	Normal	
14	Male	No	11	46	41	65	54	989	24	53 (8)	No	Normal	
15	Male	No	48	56	51	59	57	1003	25	53 (7)	Yes (RV insertion; 9)	Normal	
16	Female	Yes	23	68	50	64	58	1001	26	52 (8)	No	Normal	
17	Female	Yes	23	55	56	57	60	1030	28	48 (10)	No	Normal	
18	Female	No	21	53	35	65	66	1008	25	48 (9)	No	Normal	
19	Female	Yes	17	60	32	63	57	978	26	53 (8)	No	Normal	
20	Female	No	31	62	51	58	59	1002	25	52 (8)	No	Normal	
21	Female	Yes	31	52	40	60	60	946	28	53 (8)	No	Normal	
22	Female	Yes	30	67	49	59	64	1000	27	52 (8)	Yes (linear; 12)	Normal	
23	Female	Yes	30	58	57	57	55	964	26	53 (11)	No	Normal	
24	Female	Yes	26	52	49	55	57	1010	30	53 (10)	No	Normal	
25	Female	No	31	56	36	56	56	1027	28	50 (7)	No	Normal	
26	Male	No	12	80	44	60	53	969	21	61 (8)	Yes (linear; 8, 9)	Myocarditis	

JACC STATE-OF-THE-ART REVIEW

Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation

Vanessa M. Ferreira, MD, DPnu,^a Jeanette Schulz-Menger, MD,^b Godtfred Holmvang, MD,^c Christopher M. Kramer, MD,^d Iacopo Carbone, MD,^e Udo Sechtem, MD,^f Ingrid Kindermann, MD,^g Matthias Gutberlet, MD,^b Leslie T. Cooper, MD,ⁱ Peter Liu, MD,ⁱ Matthias G. Friedrich, MD^{k,lm}

Abbreviations: AHA, American Heart Association; CMR, cardiovascular magnetic resonance imaging; ECV, extracellular volume fraction; EDV, end-diastolic volume; EF, ejection fraction; LGE, late gadolinium enhancement; LV, left ventricular; RV, right ventricular.

^a Symptoms refer to symptoms during short-term infection. Echo volumes were calculated by 3-dimensional method. Cardiovascular magnetic resonance imaging-derived left and right ventricular volumes and function were measured from contiguous short-axis cine images using semiautomated software for endocardial

segmentation using endocardial and epicardial contours at end systole and end diastole per standard protocol. Cardiovascular magnetic resonance imaging-derived myocardial T1 and T2 mapping and ECV were done per standard guidelines. Mean (SD) native T1 less than 999 (31) milliseconds, native T2 of less than 53 milliseconds, and ECV of less than 29% were considered normal per institutional protocol based on phantom and human volunteer experiments. T2 and LGE were only considered significant if seen in 2 orthogonal planes.

JACC: Cardiovascular Imaging August 2020 DOI: 10.1016/j.jcmg.2020.08.012

LETTERS TO THE EDITOR

PDF Article

Just Accepted

Recovered COVID-19 Patients Show Ongoing Subclinical Myocarditis as Revealed by Cardiac Magnetic Resonance Imaging

Ming-Yen Ng, Vanessa M. Ferreira, Siu Ting Leung, Jonan Chun Yin Lee, Ambrose Ho-Tung Fong, Raymond Wai To Liu, Johnny Wai Man Chan, Ka Lun Alan Wu, Kwok-Cheung Lung, Andrew M. Crean, Ivan Fan-Ngai Hung and Chung-Wah SIU

- Preliminary reports had indicated that a number of patients had elevated troponin during COVID-19 infection
- Study Aim:
 - To use CMR assess for evidence of myocardial involvement or ongoing myocarditis in patients who have recovered from COVID-19
- Inclusion Criteria:
 - Recovered COVID-19 patients with ↑ troponin or ECG changes during the acute illness.
- Exclusion Criteria:
 - Poor quality images which prevented ventricular function assessment or assessment of the LGE images.
- Images were assessed by 3 radiologists

HKU LKS Faculty of Medicine Department of Diagnostic Radiology 香港大學放射診斷學系

Patients (n=16)	Symptoms at Follow-up	Reason for CMR Referral		Global Native T1	Global Native T2	LGE	Elevated Blood Biomarkers at Follow-up		
		ECG Changes	Troponin T Rise	(003)	(013)		Troponin	WBC	CRP
1	Nil	ST-elevation & sinus bradycardia	Yes	1183	40.7	Present [†]	Yes	No	No
2	Chest discomfort	1 st degree AV block; Flatten T-wave I + v6	No	1258*	57.4**	Present	No	No	Yes
3	Nil	T-wave abnormalities	Yes	1220*	61.5**	Present	Yes	No	No
4	Nil	Inferior & anterior T wave abnormality	No	1257*	57.8**	Present	No	No	No
5	SOB & Cough	Anterior T wave abnormality	No	1212*	55**	Absent	No	No	No
6	Nil	Inferior/Lateral T-wave inversion	No	1149	76.3**	Absent	No	No	No
7	Nil	Anterolateral T wave abnormality	No	1259*	50.7	Absent	No	No	Yes
8	Cough	Anterior T-wave abnormality	No	1217*	52.7	Absent	No	No	Yes
9	Nil	Anterior T wave abnormality	No	1218*	49	Absent	No	Yes	No
10	SOB & Chest discomfort	Nil	Yes	1210*	49.8	Absent	No	No	Yes
11	Nil	New AF	Yes	1204	53.4	Absent	No	No	Yes
12	Nil	Anterior ST-elevation	Yes	1179	50	Absent	Yes	No	No
13	Nil	Sinus Bradycardia	Yes	1102	51.8	Absent	Yes	No	No
14	Nil	Anterior T wave abnormality	No	1207	52.6	Absent	No	No	No
15	SOB	Anterior T-wave inversion	No	1121	47.8	Absent	No	No	No
16	Nil	Nil	Yes	1110	51.4	Absent	No	No	No

AF = Atrial fibrillation; AV = Atrioventricular; CRP = C-reactive protein; LGE = Late gadolinium enhancement; SOB= Shortness of breath; Trop = Troponin; WBC = White blood cell count

*= Elevated native T1 (>1208 ms)

**= Elevated native T2 (>54.8 ms)

[†]= Patient with infarction likely due to previous NSTEMI

MY Ng, et al. JACC Cardiovascular Imaging 2020

- 69% (11 of 16) of recovered patients were asymptomatic
- 56% (9 of 16) had abnormal CMR findings
- In asymptomatic patients, 45% (5 of 11) had abnormal CMR findings
 - 27% (3 of 11) of asymptomatic patients had serological evidence of inflammation
- In symptomatic patients, 80% (4 of 5) had abnormal CMR findings
 - 75% (3 of 4) had corroborating serological evidence of ongoing inflammation.
- Overall, 6 of 16 (38%) patients had both imaging and serological evidence of myocardial inflammation

MY Ng, et al. JACC Cardiovascular Imaging 2020

CMR & Children with MSIS

4 patients, CMR done after intravenous immunoglobulin therapy

Finding	Reference Values	Patient 1	Patient 2	Patient 3	Patient 4
LV diameter (mm)	5	39	53	54	43
LV thickness (mm)	444.	7.5	6.8	8.8	5.0
Dyskinesis or hypokinesis		No	No	No	No
LV EF (%)		68	51	56	52
LV EDV index (mL/m ²)		51	93	74	83
LV ESV index (mL/m ²)	440	16	45	32	40
Mass index (g/m ²)		44	58	54	50
RV EF (%)		63	53	57	55
RV EDV index (mL/m ²)		60	87	70	57
RVESV index (mL/m ²)		22	41	30	26
Ratio T2 myocardium/muscle	<2	1.1	2.2	2.4	2.4
Myocardial T2 (msec)	46-50	47	N/A	N/A	62
Myocardial native T1 (msec)	950-1058	1050	1112	1124	1169
LGE present		NA	No	No	No
Pericardial effusion		No	Yes	Yes	Yes

Note.— COVID-19 = coronavirus disease 2019, EDV = end-diastolic volume, EF = ejection fraction, ESV = end-systolic volume, LGE = late gadolinium enhancement, LV = left ventricle, NA = not available, RV = right ventricle.

3 out of 4 patients had diffuse high T2 abnormalities and elevated native T1

CMR & Children with MSIS

Contents lists available at ScienceDirect

Clinical Microbiology and Infection

journal homepage: www.clinicalmicrobiologyandinfection.com

Letter to the Editor

Cardiovascular magnetic resonance imaging in children with pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 and heart dysfunction

Luis M. Prieto ^{1, 2, 3, 4, *}, Belén Toral ⁵, Ana LLorente ⁶, David Coca ⁷, Daniel Blázquez-Gamero ^{1, 2, 3, 4}

- All 5 children did <u>not</u> show any signs of myocardial oedema or LGE
- T1 & T2 mapping was **not** performed

SCMR Guidelines for COVID-19

STUDY PROTOCOL

Society for Cardiovascular Magnetic Resonance (SCMR) recommended CMR protocols for scanning patients with active or convalescent phase COVID-19 infection

Sebastian Kelle^{1,2*}, Chiara Bucciarelli-Ducci³, Robert M. Judd⁴, Raymond Y. Kwong⁵, Orlando Simonetti⁶, Sven Plein⁷, Francesca Raimondi⁸, Jonathan W. Weinsaft⁹, Timothy C. Wong¹⁰ and James Carr¹¹

Conclusion:

According to the **clinical indication**, standard or rapid protocols should be used for COVID-19 patients. Especially short and dedicated CMR examinations that focus on the evaluation of cardiac morphology and function, as well as myocardial tissue characterization are recommended.

Summary of CMR Data

- CMR examination should be performed based on clinical need
- <u>More research</u> needs to be done to determine if the findings are significant
 - Long term follow-up
 - Comparison with CMR findings in other respiratory viral illnesses

HKU LKS Faculty of Medicine Department of Diagnostic Radiology MCO 香港大學放射診斷學系

Cardiac CT Use in COVID-19

SCCT Guidelines

Review article

Use of cardiac CT amidst the COVID-19 pandemic and beyond: North American perspective

Vasvi Singh ^{a, b}, Andrew D. Choi ^c, Jonathon Leipsic ^d, Ayaz Aghayev ^a, James P. Earls ^c, Philipp Blanke ^d, Michael Steigner ^a, Leslee J. Shaw Phd ^e, Marcelo F. Di Carli ^{a, b}, Todd C. Villines ^f, Ron Blankstein ^{a, b, *}

Role of Cardiac CT – Chest Pain

- Cardiac CT has been increasingly used for assessment of patients with acute chest pain rather than invasive catheter coronary angiography
- Triple rule-out CT scan.... became quintuple rule-out

Aortic Dissection

Pulmonary embolus

Coronary Disease

Pericardial effusion

COVID Pneumonia

SCAI Recommendations

Role of Cardiac CT – LA Appendage HKU Med LKS Faculty of Medicine Department of Diagnostic Radiology 香港大學放射診斷學系

Kirkpatrick, et al. JASE 2020

HKU LKS Faculty of Medicine Department of Diagnostic Radiology MCO 香港大學放射診斷學系

Prediction Models

COVID-19 Prediction Model

COVID-19 Prediction Model

- RT-PCR is the standard for confirming COVID-19 in patients
- Some countries did not have easy access to RT-PCR or results could not be provided rapidly

Lack of RT-PCR... and more!

THE Resp	LANCET iratory Medicine
	CORRESPONDENCE VOLUME 8, ISSUE 4, E22, APRIL 01, 2020
	Adoption of COVID-19 triage strategies for low-income settings
	Rodgers R Ayebare 🖂 🛛 Robert Flick 🔹 Solome Okware 🎍 Bongomin Bodo 🖕 Mohammed Lamorde
	Published: March 11, 2020 DOI: https://doi.org/10.1016/S2213-2600(20)30114-4

"This approach is simple and uses readily available technology. The most advanced tool required is a **<u>thermometer</u>**."

COVID-19 Prediction Model

• Study Aim:

- Develop two validated risk prediction models for COVID-19 positivity using readily available parameters in a general hospital setting
- Develop nomograms and probabilities to allow clinical utilisation.

COVID-19 Prediction Model

312 COVID-19 positive cases identified via the electronic patient record system of Queen Mary Hospital, Queen Elizabeth Hospital, Pamela Nethersole Eastern Hospital and Ruttonjee Hospital from 1st January to 1st April 2020

1133 cases tested for COVID-19 and found to be negative from Queen Mary Hospital and Pamela Youde Nethersole Eastern Hospital from 1st January 2020 to 1st April 2020.

1445 patients' records were searched for clinical data, blood test results and radiological data

Patients were excluded for incomplete data:
1 patient could not be ascertained if they had previous contact history

- 88 patients without WCC, Neutrophil or lymphocyte count, renal or liver function tests
- 21 patients without CXR examination were excluded
- 5 patients with no symptoms recorded

1330 patients remaining were used to create prediction models for COVID-19 positivity

Obtained IRB approval across 4 HK hospitals

MY Ng, et al. International Journal of Infectious Diseases 2020

CXR Assessment

- <u>Baseline</u> CXR images were reviewed by radiologists blinded to patient's COVID-19 status.
- Binary assessment (present or absent) for:
 - Consolidation or ground glass opacity
 - Absence of pleural effusion

COVID-19 Prediction Model

Randomly split whole database 2:1

Model Development Database

Validation Cohort

- Variables included in the models were:
 - Sex
 - Age
 - Symptoms (ie. fever, cough, shortness of breath, vomiting and diarrhoea)
 - WCC
 - Neutrophil count
 - Lymphocyte count
 - Neutrophil: lymphocyte cell ratio
 - Albumin
 - Bilirubin
 - Alanine aminotransferase
 - Estimated glomerular filtration rate
 - CXR consolidation/ ground glass opacity (GGO)
 - CXR absence of pleural effusion
 - CXR combination of consolidation/GGO with absence of pleural effusion

MY Ng, et al. International Journal of Infectious Diseases 2020

Calibration Plots

MY Ng, et al. International Journal of Infectious Diseases 2020

COVID-19 Prediction Model

LKS Faculty of Medicine Department of Diagnostic Radiology 香港大學放射診斷學系

Overall Cohort Model

	Overall Cohort	Model – Valida	tion Cohort	
Probability	Sensitivity (95% CI)	Specificity (95% Cl)	Positive predictive value (95% Cl)	Negative predictive value (95% Cl)
	91.7	69.4	41.6	97.2
0.1	(83.6,96.6)	(64.3,74.2)	(34.4,49.1)	(94.4,98.9)
0.18 (Optimal	88.1	77.9	48.7	96.5
cut-off)	(79.2,94.1)	(73.2,82.1)	(40.5,56.9)	(93.6,98.3)
	86.9	79.9	50.7	96.2
0.2	(77.8,93.3)	(75.3 <i>,</i> 83.9)	(42.2,59.1)	(93.4,98.1)
	66.7	90.9	63.6	92.0
0.4	(55.5,76.6)	(87.4,93.7)	(52.7,73.6)	(88.6,94.6)
	47.6	95.5	71.4	88.5
_ 0.6	(36.6,58.8)	(92.7,97.4)	(57.8,82.7)	(84.8,91.5)

COVID-19 Prediction Model

LKS Faculty of Medicine
 Department of Diagnostic Radiology
 香港大學放射診斷學系

Unknown Contact History Model

Unknov	vn Contact Histo	ory Model – Val	idation Cohort		
Probability	Sensitivity (95% Cl)	Specificity (95% Cl)	Positive predictive value (95% Cl)	Negative predictive value (95% Cl)	
	90.5	65.2	38.2	96.6	
0.1	(82.1,95.8)	(59.9,70.1)	(31.4,45.3)	(93.5,98.5)	
	84.5	73.4	43.0	95.2	
0.18 (Optimal cut-off)	(75.0,91.5)	(68.4,77.9)	(35.4,51.0)	(92.0,97.4)	
	82.1	74.5	43.4	94.6	
0.2	(72.3,89.6)	(69.6,79.0)	(35.6,51.5)	(91.3 <i>,</i> 96.9)	
	66.7	88.4	57.7	91.8	
0.4	(55.5,76.6)	(84.6,91.5)	(47.3,67.7)	(88.3,94.5)	
	41.7	96.6	74.5	87.4	
0.6	(31.0,52.9)	(94.1,98.2)	(59.7,86.1)	(83.7,90.6)	

」 LKS Faculty of Medicine Department of Diagnostic Radiology 包 香港大學放射診斷學系

Artificial Intelligence (AI) in COVID-19 Imaging
Al for Clinic Triage – Al Training

• AI was trained/ developed, internally and externally validated

Al for Clinic Triage – Al Training

• AI was trained/ developed, internally and externally validated

Al for Clinic Triage

Artificial Intelligence for COVID-19 HKU Med LKS Faculty of Medicine Department of Diagnostic Radiology 香港大學放射診斷學系

	External validation set	Tianyou Hospital dataset	Xianning Central Hospital dataset	The Second Xiangya Hospita dataset
True positive scans, n	698	511	129	58
Median draft report time (IQR), min*	16.21 (11.67-25.71)	14.50 (10.75-21.11)	24.75 (15.67-43.72)	25.73 (20.10-38.84)
Median report approval time (IQR), min*	23.06 (15.67-39.20)	19.23 (14.33-27.33)	47.37 (27.12-96.35)	198.77 (45.85-675.83)
Median AI triage time (IQR), min*	0.55 (0.43-0.63)	0.58 (0.45-0.64)	0.50 (0.42-0.58)	0.48 (0.44-0.53)
Median reduction in triage time under scan-to- second-reader triage workflow (IQR), min	15.73 (11.05–25.25)	14.03 (10.13-20.55)	24·31 (15·13-43·40)	25·24 (19·65–38·48)
p value†	<0.0001	<0.0001	<0.0001	<0.0001
t	257.42	243.09	114.59	69.32
Median reduction in triage time under scan-to-fever- clinician triage workflow (IQR), min	22.62 (15.12-38.63)	18·77 (13·88–26·73)	47.03 (26.53-95.83)	198-28 (45-31-675-26)
p value†	<0.0001	<0.0001	<0.0001	<0.0001
	0.00000000	252 (4	PT 79	F0 79

Conclusion

- Reviewed CXR, CT and ultrasound imaging features of COVID-19
- Explained CT scoring systems for confidence of diagnosing COVID-19
- CMR findings in COVID-19 and requirement for further research
- Role of cardiac CT in the COVID-19 era
- Predictive models for diagnosis
- Artificial intelligence assisting with image interpretation

Thank you for listening!

edX

Courses - Programs & Degrees - Schools & Partners edX for Business

Shortlisted

E-Learning

Award

Catalog > Medicine Courses

Advanced Cardiac Imaging: Cardiac Computed Tomography (CT)

First-ever cardiac CT MOOC! Learn essential knowledge for cardiac CT through short videos, downloadable cases & forums. Available in multiple languages and provides material to meet level 1 requirements in Cardiac CT.

这是第一个关于心脏CT的MOOC! 通过播放短视频,下载病例和线上学术 研讨会学习心脏CT的解剖学,图像采集技术和分析并报告图像的能力。该 课程提供多种语言,并提供满足心脏CT一级要求的材料。

REIMAGINE

Wharton LEARNING LAB

[🔾] Ming_Yen_Ng 🗸