Colistin Resistant: Is it Preventable?

ANUCHA APISARNTHANARAK, MD PROFESSOR IN INFECTIOUS DISEASES THAMMASAT UNIVERSITY HOSPITAL THAILAND

OBJECTIVES

Epidemiology of CR and CoRO GNB

Evidence on control MDR-GNB

Evidence on control of Colistin-resistant GNB

Case

A 72 year-old, Thai male, with DM, COPD, renal failure, and recurrent carbapenem-resistant *Acinetobacter buamnnii* treated with colistin for 4 episodes in the past year, presenting to ICU with pneumonia.

Patient was empirically treated with colistin + cefoperazone-sulbactam and was placed on isolation precaution.

His sputum culture grew colistin resistant *A. baumannii* with colistin MIC = 128 mcg/dL and IC team was notified.

Antimicrobial Susceptibility

In Vitro Susceptibility to Various Antibiotics of Colistin-Resistant Gram-Negative Bacterial Isolates in a General Tertiary Hospital in Crete, Greece

George Samones, Dimitrios K. Matthaiou. Diamantis Kofteridis, Sofia Maraki, and Matthew E. Falagas

Identifier	Isolate	Site of isolation	Sex	COL	IMI	CPFX	GM	CZID	CTAX	CFP	PIP-TAZ	TET	FM	TMP-SMZ	CHL
1	Klebsiella pneumoniae	Urine	М	R	R	R	R	R	R	R	R	R	S	R	R
2	Pseudomonas aeruginosa	Pus	F	R	S	S	S	S	R	S	S	R	S	R	R
3	P. aeruginosa	Bronchial	М	R	S	S	S	S	R	S	S	R	S	R	R
4	Acinetobacter junii	Pus	F	R	S	S	S	S	R	S	S	S	R	R	S
5	A. junii	Pus	М	R	S	S	S	S	S	S	S	S	S	S	S
6	K. pneumoniae	Urine	М	R	S	R	S	S	S	S	S	R	S	R	S
7	K. pneumoniae	Urine	Μ	R	S	R	S	S	S	S	S	R	S	S	S
8	P. aeruginosa	Pus	М	R	S	R	R	R	R	R	S	R	S	R	R
9	P. aeruginosa	Bronchial	F	R	R	S	S	R	R	R	R	R	S	R	R
10	Acinetobacter baumannii	Pus	М	R	S	R	R	R	R	R	S	R	S	R	R

Table 1. Results of In Vitro Susceptibility Testing of Colistin-Resistant Isolates against Various Antibiotics

NOTE. BAL, bronchoalveolar lavage; CFP, cefepime; CHL, chloramphenicol; COL, colistin; CPFX, ciprofloxacin; CTAX, cefotaxime; CZID, ceftazidime; F, female; FM, fosfomycin; GM, gentamicin; IMI, imipenem; M, male; PIP-TAZ, piperacillin-tazobactam; R, resistant; S, susceptible; TET, tetracycline; TMP-SMZ, trimethoprim-sulphamethoxazole.

In Vitro Susceptibility to Various Antibiotics of Colistin-Resistant Gram-Negative Bacterial Isolates in a General Tertiary Hospital in Crete, Greece

George Samones, Dimitrios K. Matthaiou. Diamantis Kofteridis, Sofia Maraki, and Matthew E. Falagas

CID 2010:50 (15 June) CORRESPONDENCE

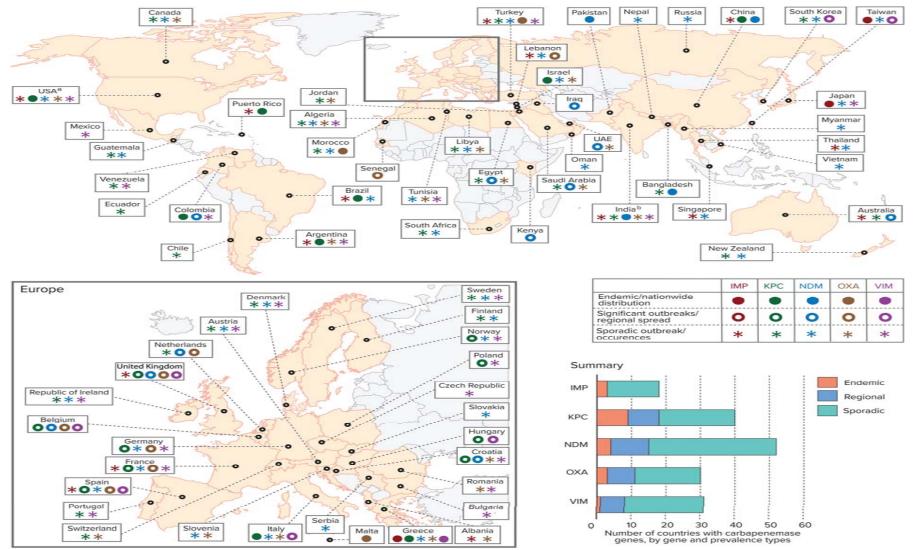
[8], colistin-resistant isolates were found to be more susceptible to penicillins and carbapenems, as well as to cephalosporins, than were colistin-susceptible isolates. However, it is very interesting that these isolates were also susceptible to antibiotic classes that are normally not potent against gram-negative pathogens. In the other study [9], Acinetobacter isolates were identified after the determination of the partial *rpoB* gene sequence. According to the variability of the regions in the rpoB gene sequence, the susceptibility of A. baumannii isolates to other antimicrobial classes increased as their resistance to polymyxins increased.

This observed phenomenon of maintenance of susceptibility to various antimicrobial agents among colistin-resistant isolates in this study may be explained by assuming that the biological cost of antibiotic resistance to colistin led to suppression or loss of resistance genes to other antibiotic classes [10]. However, compensatory mutations may cause the accumulation of numerous drug resistance mechanisms in a pathogen without any reduction in its virulence [11].

Implementation of IC Measures

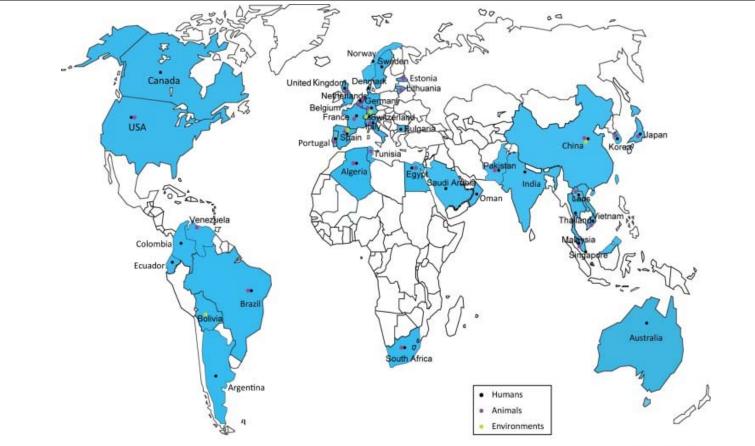
Enhanced contact isolations (e.g., strict adherence to HH and use of grow and gloves).

ASC from rectal and tracheal suction for all ICU patients on day 0 and 7 day later until discharged.


Twice daily environmental cleaning with detergent and phenolic agents for hi-touch items and site and site contaminated with blood.

Up-to-date real time education and real time feedback on IPC adherence to HCWs.

TABLE 1. Infection Prevention Control (IPC) Measures Monitored in an 8-Bed Intensive Care Unit over a 76-Day Study Period after Index Case Detection of Colistin-Resistant Acinetobacter baumannii Infection


Variable	Observation data
No. of patient-days monitored	540
Compliance with IPC measures, no. (%) of opportunities (n	= 100)
Hand hygiene	85 (85)
Contact isolation	74 (74)
Environmental cleaning	100 (100)
Active surveillance culture	81 (81)
Chlorhexidine bath	79 (79)
Chlorhexidine mouth care	100 (100)
New cases of colistin-resistant A. baumannii infection or colo	onization 0
Our findings suggest that intensified IPC measures after prompt case detection and isolation of the patient were as- sociated with containment of colistin-resistant <i>A. baumannii</i> in a resource-limited setting. Additional studies to identify	Anucha Apisaranthanarak, MD; ¹ Sassinuch Rujanavech, MD; ¹ Pornpong Luxamesathaporn, MD; ¹ Linda M. Mundy, MD, PhD ²

GLOBAL DISTRIBUTION OF CARBAPENEMASES IN ENTEROBACTERIACEAE

Logan LK, Weinstein RA. J Infect Dis 2017;215(S1):S28-36

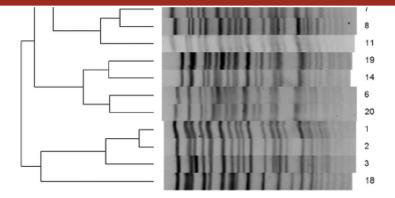
Global Report of MCR-1 Like Colistin Resistant

Trends in Microbiology

Sun J, et al. Toward understanding of MDR-like colistin resistant. Trend in microbiology 2018

Colistin-Resistant *Acinetobacter baumannii*: Beyond Carbapenem Resistance

Clin Infect Dis. (2015)

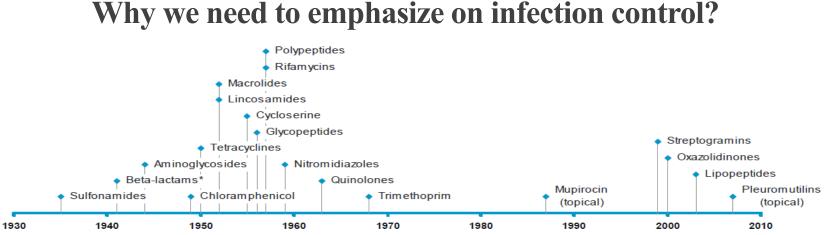

Zubair A. Qureshi, Lauren E. Hittle, Jessica A. O'Hara, Jesabel I. Rivera, Alveena Syed, Ryan K. Shields, Anthony W. Pasculle, Robert K. Ernst, and Yohei Doi

Genetic relatedness of colistin susceptibile and resistant AB

- Adequacy of colistin dosing to avoid suboptimal use
- Colistin should not be used to decolonize asymptomatic CRE carriage
- Empirical colistin should be subjected to tight restriction

By MLST, all isolates belong to International Clone 2

Modification of Lipid A was present in all Colistin-R isolates


RESEARCH ARTICLE

Risk factors for colistin-resistant Enterobacteriaceae in a low-endemicity setting for carbapenem resistance – a matched case-control study

Andrea C Büchler¹, Christian Gehringer^{2,3}, Andreas F Widmer¹, Adrian Egli^{3,4}, Sarah Tschudin-Sutter^{1,5}

- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Basel, Basel, Basel, Switzerland
 Division of Clinical Microbiology, University Hospital Basel, University of Basel, Basel, Switzerland
 Division of Clinical Microbiology, University Hospital Basel, University of Basel, Basel, Switzerland
 Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerl
 Department of Clinical Research. University Hospital Basel. University of Basel, Basel, Switzerland

Patient characteristics						
Age	0.	99	Δ	mpicillin/Amoxicillin (n=42/126)		
Prior hospitalisation in Swi	tzerland ^a	•		cillin/Clavulanic acid (n=42/126)	-	
Prior ICU stay ^a	0.78				-	
Prior hospitalisation abroa	CI): 1.	19-20.92:	p = 0.028).	Conclusion:	In a	low-
Stay abroad ^a						
Charlson comorbidity inde	endem	icity settin	ig for carba	penem resist	ance,	prior
Surgery ^a		wa ta aauk		ing the only	state for	atox
	exposu	ire to carr	papenems w	as the only	risk ta	actor
Chemotherapy ^a	for col	onication c	ar infaction	with colistin-	rocictor	at E
Colonisation with MDR		unisation c	or intection	with constin-	resistai	IL E.
Any _	coli or	K nnoume	nine Prior	exposure to o	olistin	Was
MRSA		R. pricume		exposure to t	Joursum	was
Gram-negatives	not sig	nificantly	associated v	with detection	of col	istin
Prior exposure to antimi	Ŭ					
Antibiotic treatment	resista	nce, which	i mainly occ	urred in the	absend	e of
Penicillins						
Cephalosphorins	concur	rent carbar	penem resist	lance.		
Carbapenems		2.27		1111010101011011 (11-2/) 00)]	
Quinolones		2.27		Norfloxacin ^a (n=32/103)		
Sulfonamides	-	3.94		Ciprofloxacin ^a (n=42/142)	-	
Glycopeptides	-	4.00		Levofloxacin ^a (n=42/142)	_	
Aminoglycosides		3.00		Fosfomycin ^a (n=34/102)	_	
Others		2.40				
		L		0	10 2010 2010 2010 40	10 50% 60% 10% 20% 90% 50%
0.01 0.1	1	1 10	100			

* Beta-lactams include three groups sometimes identified as separate classes: penicillins, cephalosporins, and carbapenems 2009: Telavancin (complicated skin and skin structure infections)

2010: Ceftaroline fosamil (bacterial skin infections and pneumonia)

2011: Fidaxomicin (*Clostridium difficile*-associated diarrhea)

2012: Not available

2013: Talavancin (HAP, VAP)

2014: Ceftolozane/tazobactam (IAI, UTI), Oritavancin. tidizolid

2015: Ceftazidime/avibactam (G(-))

2016: Bezlotoxumab (C. diff)

2017: Delafloxacin tab (MRSA), meropenem/vaborbactam (KPC-UTIs)

2018: Omadacycline (MRSA), Plazomycin(CRE-UTIs).

http://www.centerwatch.com/drug-information/fda-approvals

Understanding the appropriate use of colistin to prevent colistin resistant

CPE: Carbapenemase-Producing *Enterobactereaceae*

Strains of *Enterobacterales* (mostly *K. pneumoniae* but also *E. coli, Enterbacter* spp., *Citrobacter* spp.,....) **producing carbapenemases**

	KPC-type	OXA-48like	Metallo-enzymes (NDM, VIM, IMP)
CARBAPENEM ACTIVITY	Strong	Weak	Strong
SPECTRUM	Extended (most ß-lactams)	Narrow (penicillins, narrow-spectrum Cephem)	Extended (most ß- lactams exc. Azteonam)
Clinically useful inhibitors	AvibactamVaborbactamRelebactam	• Avibactam	• None

Naas et al – Current Drug Targets 2016 Bush & Bradford – Cold Spring Harb Perspect Med 2016

Logan & Weinstein – JID 2017

Need for Molecular-directed Therapy!

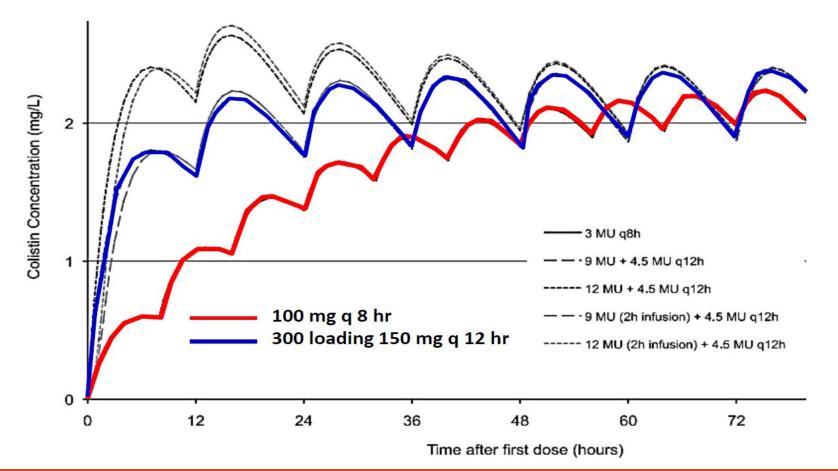
TABLE 1 | The advantages and limitations of common detection methods.

Detection methods	Advantages	Limitations		
Phenotypic detection	1 assays			
Modified Hodge test (MHT)	 Detecting KPC Simple and inexpensive 	 False-positive and false-negative Insufficient for MBLs Time consuming 		
Colorimetric assay	 Detecting KPC and most MBLs Type carbapenemases Simple and inexpensive 	 Insufficient for OXA-48 Specific reagents Various infecting factors 		
Modified carbapenem inactivation method (mCIM)	 Detecting all carbapanemeses Clear criteria of judgment Simple and cost-effectiveness 	1. Time consuming		
Spectrophotometric method	 High sensitivity and specificity Time saving Simple and inexpensive 	 Specific instrument (spectrophotometer) Various influencing factors No standard equation and cut-off value Small sample size 		
MALDI-TOF-based methods	 Detecting KPC and NDM Time saving Easy to perform Low measurement cost 	 Insufficient for OXA-48 No clear protocol and standard analysis Expensive equipment 		
Molecular-based detection methods	 Gold standards Detecting all carbapanemeses genes Type carbapenemase genes Time saving 	 High technical requirements Insufficient for expression of genes High measurement cost 		

Combination Therapy for CRE

	Combination therapies	Advantages	Limitations	Mechanisms of resistance
Tigecycline-based combinations	 +aminoglycosides^a +carbapenems^b +fosfomycin +polymyxin 	 Effective for kinds of CRE (Sader et al., 2015) Lower mortality rates 	 Unclear mechanism Unclear optimal dose Poor pharmacokinetic properties (Giamarellou and Poulakou, 2011) Side effects were evident with 	 Increasing expression of RND efflux pumps Mobile resistance genes, <i>tet</i>(A), <i>tet</i>(K), <i>tet</i>(M), <i>tet</i>(X3), and <i>tet</i>(X4) (Linkevicius et al., 2016; He et al., 2019)
Polymyxin-based combinations	 +carbapenems^b +tigecycline +fosfomycin 		increasing dose (Tasina et al., 2011; Ramirez et al., 2013) 5. Inducing resistance	 Mobile colistin resistance genes
Other combinations	 fosfomycin + aminoglycosides^a aztreonam + aminoglycosides^a Tigecycline + polymyxin + carbapenem^b 			 Fosfomycin-modified genes and modification of MurA for fosfomycin resistance (Solomkin et al., 2014) rmtB for aminoglycosides resistance

^aAminoglycosides refer to amikacin and isepamicin. ^bCarbapenems refer to meropenem and imipenem.


Xiaoyan Cui, Haifang Zhang and Hong Du*

Frontiers in Microbiology | www.frontiersin.org

NB: mechanisms for synergy has not yet been established for most commonly used regimens

Population Pharmacokinetics of Colistin Methanesulfonate and Formed Colistin in Critically Ill Patients from a Multicenter Study Provide Dosing Suggestions for Various Categories of Patients[⊽]

S. M. Garonzik,¹[†] J. Li,²[†] V. Thamlikitkul,³ D. L. Paterson,⁴ S. Shoham,⁵ J. Jacob,² F. P. Silveira,⁶[‡] A. Forrest,¹[‡] and R. L. Nation²^{*}[‡]

SPECIAL ARTICLE

International Consensus Guidelines for

the Optimal Use of the Polymyxins:

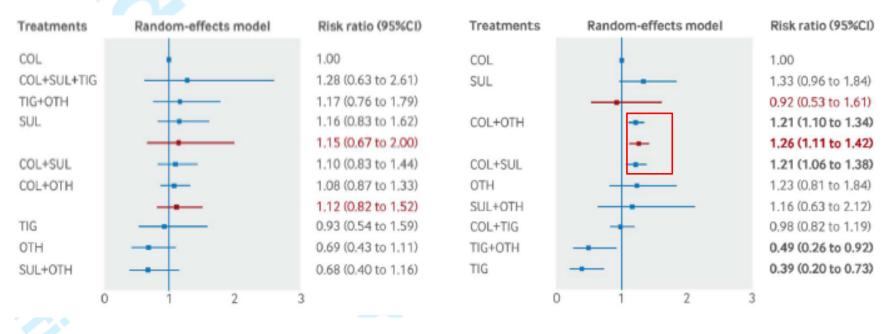
We recommend initiating IV therapy with a CMS loading dose of 300 mg CBA (~9 million IU) infused over 0.5–1 hours and to administer the first maintenance dose 12–24 hours later

Pharmacokinetic/Pharmacodynamic (PK/PD) Simulation for Dosage Optimization of Colistin Against Carbapenem-Resistant *Klebsiella pneumoniae* and Carbapenem-Resistant *Escherichia coli*

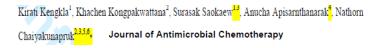
Kamonchanok Jitaree¹, Korbtham Sathirakul¹, Jantana Houngsaitong¹, Orarik Asuphon², Weerayuth Saelim³, Visanu Thamlikitkul^{4,*} and Preecha Montakantikul^{5,*}

Creatinine Clearance	MIC 0.5 mcg/mL	MIC 2 mcg/mL	MIC 8 mcg/mL
(mL/min)	Daily Dose (CBA)	Daily Dose (CBA)	Daily Dose (CBA)
≥80	150 mg every 12 h (EMA, FDA)	Not recommended	Not recommended
51–79	114 mg every 12 h (FDA)	180 mg every 8 h (our study)	Not recommended
30–50	150 mg every 24 h (FDA)	150 mg every 12 h (our study)	Not recommended
11–29	60 mg every 24 h	150 mg every 12 h	150 mg every 8 h
	(FDA)	(our study)	(our study)
≤10	60 mg every 24 h	120 mg every 24 h	180 mg every 12 h
	(FDA)	(EMA)	(our study)

Table 5. The recommended dose based on the ability to achieve PTA target at various MICs.


Table 6. The recommended dose based on the ability to achieve PTA target at various MICs.

Creatinine Clearance (mL/min)	MIC 16 mcg/mL Daily Dose (CBA)	MIC 32 mcg/mL Daily Dose (CBA)
≥80	Not recommended	Not recommended
51-79	Not recommended	Not recommended
30-50	Not recommended	Not recommended
11-29	Not recommended	Not recommended
≤10	180 mg every 8 h (our study)	Not recommended
		WIIC


Impact of combination treatments on CR-Acinetobacter baumannii

(b) microbiological cure

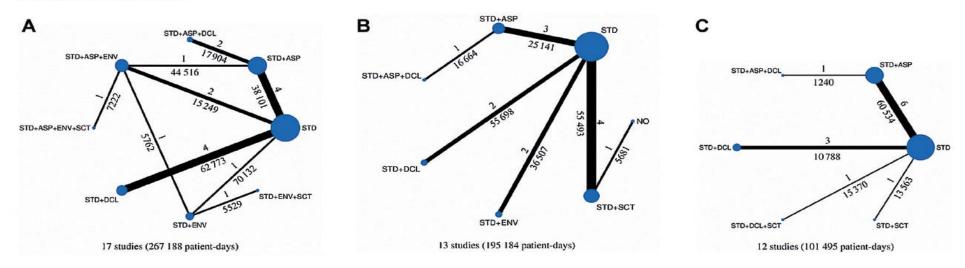
(a) clinical cure

Comparative efficacy and safety of treatment options for multidrug-resistant and extensively drug-resistant Acinetobacter baumannii infections: a systematic review and network meta-analysis.

Journal of Antimicrobial Chemotherapy

Which IC component work to control for different GNB?

Clinical Infectious Diseases


SUPPLEMENT ARTICLE

MDR Gram-Negative Bacteria in Adult ICUs • CID 2017:64 (Suppl 2)

Prevention and Control of Multidrug-Resistant Gram-Negative Bacteria in Adult Intensive Care Units: A Systematic Review and Network Meta-analysis

Nattawat Teerawattanapong,¹ Kirati Kengkla,² Piyameth Dilokthornsakul,³ Surasak Saokaew,^{2,3,4} Anucha Apisarnthanarak,⁵ and Nathorn Chaiyakunapruk^{3,4,6,7}


Rationale

To evaluate the existing evidence (RCT & observational studies) on the control of MDROs Gram negative

Interventions: standard of care (STD), antimicrobial stewardship (ASP), environmental cleaning (ENV), decolonization method (DCL), and source control (STC)

Outcomes: MDR-GNB acquisition as well as mortality

Figure 2 Summary of network meta-analyses results for MDR-GNB acquisition compared with standard care

eFigure 10.1 Network estimated rate ratios (95% confidence intervals) of IPC strategy for prevention of MDR-*Acinetobacter baumannii* acquisition.*

STD+ASP+ ENV+SCT						
$\frac{0.08}{(0.03, 0.24)}$	STD+ASP+ ENV					
<u>0.02</u> (0.00, 0.39)	0.26 (0.01, 5.56)	STD+ENV+ SCT				
<u>0.02</u> (0.00, 0.35)	0.18 (0.01, 4.95)	0.70 (0.18, 2.64)	STD+DCL			
<u>0.02</u> (0.01, 0.07)	$\frac{0.28}{(0.18, 0.43)}$	1.07 (0.05, 23.55)	1.53 (0.05, 43.25)	STD+ASP		_
<u>0.01</u> (0.00, 0.18)	0.13 (0.01, 2.64)	0.48 (0.35, 0.66)	0.69 (0.19, 2.53)	0.45 (0.02, 9.83)	STD+ENV	
<u>0.01</u> (0.00, 0.17)	0.09 (0.00, 2.37)	0.35 (0.11, 1.15)	<u>0.50</u> (0.28, 0.92)	0.33 (0.01, 8.80)	0.73 (0.23, 2.29)	STD

eFigure 10.2 Network estimated rate ratios (95% confidence intervals) of IPC strategy for prevention of MDR-*Pseduomonas aeruginosa* acquisition.*

STD+DCL				
0.60 (0.12, 3.13)	STD+SCT			
0.50 (0.14, 1.88)	0.84 (0.16, 4.50)	STD+ASP		
0.41 (0.05, 3.51)	0.68 (0.06, 7.31)	0.81 (0.09, 7.14)	STD+ENV	
0.42 (0.17, 1.04)	0.69 (0.18, 2.71)	0.82 (0.31, 2.19)	1.02 (0.15, 7.13)	STD

eFigure 10.3 Network estimated rate ratios (95% confidence intervals) of IPC strategy for prevention of Extended-Spectrum Beta-Lactamases Enterobacteriaceae acquisition.*

STD+ASP+ ENV+SCT	ŕ							
<u>0.02</u> (0.00, 0.46)	STD+ASP+ DCL		_					
$\frac{0.01}{(0.00, 0.27)}$	0.84 (0.18, 3.87)	STD+ASP+ ENV						
$\frac{0.01}{(0.00, 0.21)}$	0.58 (0.11, 2.95)	0.69 (0.27, 1.76)	STD+ENV					
<u>0.01</u> (0.00, 0.20)	0.49 (0.12, 2.09)	0.58 (0.18, 1.92)	0.85 (0.23, 3.12)	STD+DCL				
<u>0.01</u> (0.00, 0.16)	0.41 (0.14, 1.16)	0.49 (0.16, 1.48)	0.71 (0.20, 2.45)	0.83 (0.31, 2.23)	STD+ASP			
<u>0.00</u> (0.00, 0.09)	<u>0.23</u> (0.07, 0.80)	<u>0.28</u> (0.11, 0.69)	0.41 (0.14, 1.17)	0.48 (0.22, 1.01)	0.57 (0.30, 1.09)	STD		
<u>0.00</u> (0.00, 0.02)	<u>0.03</u> (0.00, 0.31)	$\frac{0.04}{(0.01, 0.32)}$	<u>0.06</u> (0.01, 0.49)	<u>0.07</u> (0.01, 0.50)	<u>0.09</u> (0.01, 0.58)	$\frac{0.15}{(0.02, 0.91)}$	STD+SCT	
<u>0.00</u> (0.00, 0.01)	<u>0.00</u> (0.00, 0.19)	<u>0.00</u> (0.00, 0.20)	<u>0.01</u> (0.00, 0.31)	<u>0.01</u> (0.00, 0.33)	<u>0.01</u> (0.00, 0.39)	<u>0.02</u> (0.00, 0.65)	0.12 (0.01, 2.67)	NO

eFigure 10.4 Network estimated rate ratios (95% confidence intervals) of IPC strategy for prevention of carbepenem resistant Enterobacteriaceae acquisition.*

STD+ASP+ ENV+SCT			
<u>0.18</u> (0.08, 0.37)	STD+ENV		_
<u>0.07</u> (0.01, 0.42)	0.38 (0.08, 1.87)	STD	
<u>0.03</u> (0.00, 0.80)	0.15 (0.01, 4.02)	0.39 (0.02, 7.09)	STD+ASP

Lessons Learnt

- CRE: Practices all 4 core components
- XDR-AB: ENV featuring measures
- ESBL: ASP featuring measures
- XDR-PA: None

Evidence on Control of Colistin-Resistant Gram Negative

PREVENTION AND CONTROL OF COLISTIN-RESISTANT GRAM-NEGATIVE BACTERIA: A SYSTEMATIC REVIEW AND META-ANALYSIS

ASUPON A, ET AL. (UNDER PREPARATION)

Study Design

Outbreak settings (n = 17 studies)

Non-outbreak settings (n = 11 studies)

Outbreak setting

- Study design: Observational (pre-post) 17 studies; no RCTs
- Database searched: only Pubmed

Pre-endemic intervention				Post-endemic intervention										
HH+CP	HH+ENV	HH+CP+ENV	HH+CP+ASC	HH+CP	HH+CP+ASC	HH+CP+ENV	HH+ENV+ASC	HH+CP+ASP+ASC	HH+CP+ENV+ASC	HH+CP+SCT+ASC	HH+CP+ENV+ASP+AS C	Outcome	Number of studies	Difference between pre- and post- endemic intervention
✓				~								positive	4	enhanced
~					✓							positive	1	add ASC
~								✓				negative	1	add ASP and ASC
✓						✓						positive	1	add ENV
✓									✓			positive	2	add ENV and ASC
✓										✓		positive	1	add SCT and ASC
			~						✓			positive	1	add ENV
		~				~						positive	1	enhanced
												negative	1	enhanced
	~								√			positive	2	add CP and ASC
	~										~	positive	1	add CP, ASP and ASC
	✓						~					negative	1	add ASC

Key Observations

IC interventions (work)

IC intervention (not work)

Enhanced HH + CP

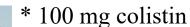
Addition of ASC +/- ASP

Addition of ENV +/- ASC

Addition of SCT + ASC

Addition of CP + ASC +/-ASP

Do SDD/SOD work in Asia?


DOES IT WORK IN ENDEMIC REGIONS FOR MDR-GNB?

Two flavours

The strategy includes twice weekly surveillance sampling (rectum and respiratory tract)

SDD

- Oropharyngeal paste
- + Nasogastric suspension
 - 10 ml suspension

- * 80 mg tobramycin
- * 500 mg amphotericin B
 (or: nystatin 2 × 10⁶ units)

SOD

- Oropharyngeal paste
 - 0.5 gram
 - *2% colistin
 - * 2% tobramycin
 - * 2% amphotericin B
 (or: nystatin 1 × 10^s units)

=topical regimen, $4 \times$ daily, until extubation or ICU-discharge

• + day course of 3^{rd} -generation cephalosporins IV

Expert Opinions (SDD)

AA: "What kind of infrastructure do you need to start good SDD program?"

MB: "You really need to have a good team"

AA: "What do you mean by having a good team?"

MB: "It means you need to have good microbiology with quick turn around time. Regular meeting is needed to review the pattern of microbiology. If any MDR emerges, we will hold SDD program till it get back to the baseline rate."

AA: "Do you really think that SDD work in Europe?"

MB: "It works here in Netherland, but considered debatable in other parts of Europe"

Expert Opinion (SOD)

AA: What is your suggestion on SOD?

SH: It has 2 caveats.

Logistical: Local production, ease of use, patient side effects and bad taste

Ecological: Selection of Col-R GNB

But I think that the benefit outweigh the risk

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Decontamination of the Digestive Tract and Oropharynx in ICU Patients

A.M.G.A. de Smet, M.D., J.A.J.W. Kluytmans, M.D., Ph.D., B.S. Cooper, Ph.D., E.M. Mascini, M.D., Ph.D., R.F.J. Benus, M.D., T.S. van der Werf, M.D., Ph.D., J.G. van der Hoeven, M.D., Ph.D., P. Pickkers, M.D., Ph.D., D. Bogaers-Hofman, I.C.P., N.J.M. van der Meer, M.D., Ph.D., A.T. Bernards, M.D., Ph.D., E.J. Kuijper, M.D., Ph.D., J.C.A. Joore, M.D., M.A. Leverstein-van Hall, M.D., Ph.D., A.J.G.H. Bindels, M.D., Ph.D., A.R. Jansz, M.D., R.M.J. Wesselink, M.D., Ph.D., B.M. de Jongh, M.D., Ph.D., P.J.W. Dennesen, M.D., Ph.D., G.J. van Asselt, M.D., Ph.D., L.F. te Velde, M.D., I.H.M.E. Frenay, M.D., Ph.D., K. Kaasjager, M.D., Ph.D., F.H. Bosch, M.D., Ph.D., M. van Iterson, M.D., S.F.T. Thijsen, M.D., Ph.D., G.H. Kluge, M.D., Ph.D., W. Pauw, M.D., J.W. de Vries, M.D., Ph.D., J.A. Kaan, M.D., J.P. Arends, M.D., L.P.H.J. Aarts, M.D., Ph.D., F.U. Uijtendaal, Pharm.D., H.I.J. Harinck, M.D., Ph.D., A. Voss, M.D., Ph.D., E.V. Uijtendaal, Pharm.D., H.E.M. Blok, M.Sc., E.S. Thieme Groen, M.D., M.E. Pouw, M.D., C.J. Kalkman, M.D., Ph.D., and M.J.M. Bonten, M.D., Ph.D.

End Point	Study Group				Unadjusted Odds Ratio or Hazard Ratio (95% CI);			Adjusted Odds Ratio or Hazard Ratio (95% CI)†		
	Standard Care (N=1990)	SDD (N = 2045)	SOD (N=1904)	Standard Care	SDD	SOD	Standard Care	SDD	SOD	
Death — no. (%)										
During the first 28 days	544 (27.5)	546 (26.9)	502 (26.6)	1.00	0.94 (0.82-1.08)	0.95 (0.82–1.10)	1.00	0.83 (0.72-0.97)	0.86 (0.74–0.99	
In the ICU	443 (22.3)	440 (21.5)	416 (21.8)	1.00	0.91 (0.79–1.06)	0.97 (0.83–1.13)	1.00	0.81 (0.69-0.94)	0.87 (0.74–1.02	
In the hospital	632 (31.8)	665 (32.6)	584 (30.7)	1.00	0.99 (0.86–1.13)	0.94 (0.82-1.08)	1.00	0.88 (0.76-1.01)	0.85 (0.74–0.98	
Time to outcome for survivors at day 28 — days										
Cessation of mechanical ventilation				1.00	1.06 (0.96–1.18)	1.01 (0.89–1.15)	1.00	1.10 (0.99–1.22)	1.03 (0.90-1.12	
Median	8	7	8							
Interquartile range	3–17	4–15	4-15							
Discharge from ICU				1.00	1.02 (0.92–1.12)	1.00 (0.89–1.11)	1.00	1.09 (0.99–1.21)	1.06 (0.94–1.19	
Median	9	9	9							
Interquartile range	6–19	6-18	6-17							
Discharge from hospital				1.00	1.04 (0.91–1.19)	1.05 (0.91-1.22)	1.00	1.13 (1.01–1.25)	1.13 (0.96-1.32	
Median	29	28	28							
Interquartile range	16-48	16-45	16-47							

Table 3. Cumulative Incidence of ICU-Acquired Bacteremia and Candidemia.*									
Type of Infection	Cru	rude Odds Ratio (95% CI)							
	Standard Care (N=1990)	SOD (N=1904)	SDD (N=2045)	SDD vs. Standard Care	SOD vs. Standard Care	SDD vs. SOD			
		no. (%)							
Staphylococcus aureus	22 (1.1)	9 (0.5)	9 (0.4)	0.40 (0.18-0.86)	0.43 (0.20–0.93)	0.93 (0.37–2.40)			
Streptococcus pneumoniae	3 (0.2)	1 (0.1)	1 (0.0)	0.32 (0.03-3.12)	0.35 (0.04–3.35)	0.93 (0.06–14.90			
GNF-GNR species†	36 (1.8)	17 (0.9)	16 (0.8)	0.43 (0.24–0.77)	0.49 (0.27–0.87)	0.88 (0.44–1.74)			
Enterobacteriaceae	87 (4.4)	59 (3.1)	18 (0.9)	0.19 (0.12–0.32)	0.70 (0.50–0.98)	0.28 (0.16-0.47)			
Enterococcus species	55 (2.8)	49 (2.6)	48 (2.3)	0.85 (0.57–1.25)	0.93 (0.63–1.37)	0.91 (0.61-1.36)			
Candida species	16 (0.8)	14 (0.7)	8 (0.4)	0.49 (0.21–1.11)	0.91 (0.45-1.85)	0.53 (0.23–1.24)			
Patients with at least one episode of bacteremia or candidemia — no. (%)	186 (9.3)	124 (6.5)	88 (4.3)	0.44 (0.34–0.57)	0.68 (0.53–0.86)	0.65 (0.49–0.85)			

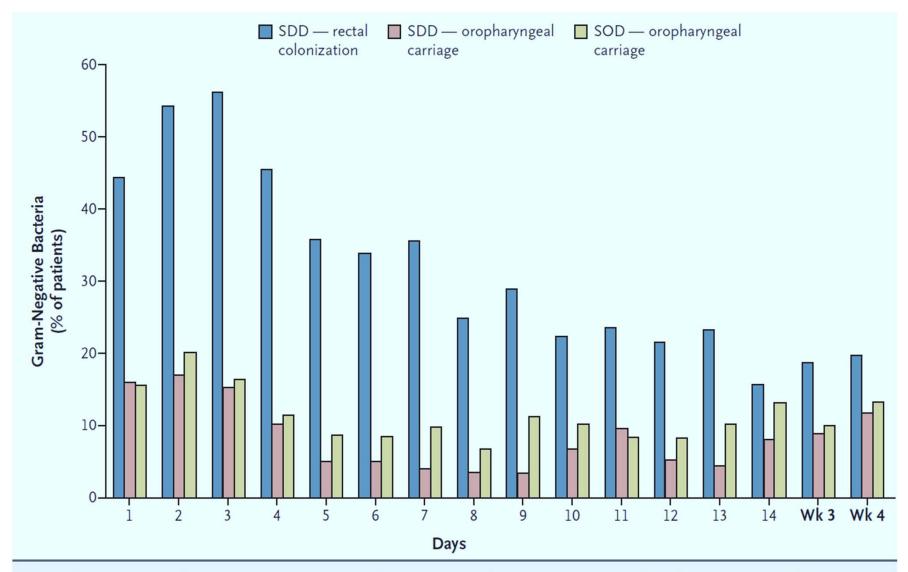


Figure 1. Detection of Gram-Negative Bacteria in Patients in the Intensive Care Unit Who Were Treated with Selective Digestive Tract Decontamination (SDD) or Selective Oropharyngeal Decontamination (SOD).

Selective digestive tract decontamination and selective oropharyngeal decontamination and antibiotic resistance in patients in intensive-care units: an open-label, clustered group-randomised, crossover study

Anne Marie G A de Smet, Jan A J W Kluytmans, Hetty E M Blok, Ellen M Mascini, Robin F J Benus, Alexandra T Bernards, Ed J Kuijper, Maurine A Leverstein-van Hall, Arjan R Jansz, Bartelt M de Jongh, Gerard J van Asselt, Ine H M E Frenay, Steven F T Thijsen, Simon N M Conijn, Jan A Kaan Jan P Arends, Patrick DJ Sturm, Martin C J Bootsma, Marc J M Bonten

Interpretation

We report a novel study quantifying the effects of SDD, SOD, and standard care on occurrence of bacteraemia and Tobramycin resistance Escherichia coli and Kleb respiratory tract colonisation with highly resistant Other Enterobacteriace Acinetobacter spp and S microorganisms acquired in intensive-care units. SDD was Other glucose non-ferr Gram-negative rods (tr associated with a 59% rate reduction of highly resistant Cefotaxime resistance E coli and Klebsiella spp bacteraemia compared with standard care in this setting, and Other Enterobacteriace a 63% rate reduction compared with SOD. SOD was Enterobacteriaceae (to associated with a rate reduction in acquired respiratory tract Colistin resistance Proteus spp and Serratic colonisation with highly resistant microorganisms of 32% Data are n (%) unless othe compared with standard care, and SDD was associated with a NNT=number needed to t Table 6: Respiratory tra 38% reduction compared with standard care.

 SDD vs SOD

 0.50 (0.23-1.11)

 0.38 (0.21-0.69)

 1.18 (0.78-1.78)

 2.56 (1.51-4.35)

 1.11 (0.84-1.47)

 0.18 (0.04-0.79)

 0.45 (0.25-0.78)

 0.37 (0.22-0.62);

 ARR 4%; NNT 26

 0.49 (0.35-0.69);

 ARR 6%; NNT 17

 :e risk reduction.

Decontamination Strategies and Bloodstream Infections With Antibiotic-Resistant Microorganisms in Ventilated Patients

A Randomized Clinical Trial

Bastiaan H. Wittekamp, MD, PhD,^{M1} <u>Nienke L. Plantinga</u>, MD, PhD,² <u>Ben S. Cooper</u>, PhD,³ <u>Joaquin Lopez-Contreras</u>, MD, PhD,⁴ <u>Pere Coll</u>, MD, PhD,⁵ <u>Jordi Mancebo</u>, MD,⁶ <u>Matt P. Wise</u>, MD, PhD,⁷ <u>Matt P. G. Morgan</u>, MD, PhD,⁷ <u>Pieter Depuydt</u>, MD, PhD,⁸ <u>Jerina Boelens</u>, MD, PhD,⁹ <u>Thierry Dugernier</u>, MD, PhD,¹⁰ <u>Valérie Verbelen</u>, PhD,¹¹ <u>Philippe G. Jorens</u>, MD, PhD,¹² <u>Walter Verbrugghe</u>, MD,¹² <u>Surbhi Malhotra-Kumar</u>, PhD,¹³ <u>Pierre Damas</u>, MD, PhD,¹⁴ <u>Cécile Meex</u>, PhD,¹⁵ <u>Kris Leleu</u>, MD,¹⁶ <u>Anne-Marie van den Abeele</u>, MD,¹⁷ <u>Ana Filipa Gomes Pimenta de Matos</u>, MSc,¹⁸ <u>Sara Fernández Méndez</u>, MD,¹⁹ <u>Andrea Vergara Gomez</u>, Msc,²⁰ <u>Viktorija Tomic</u>, MD, PhD,²¹ <u>Franc Sifrer</u>, MD,²² <u>Esther Villarreal Tello</u>, MD,²³ <u>Jesus Ruiz Ramos</u>, PhD,²³ <u>Irene Aragao</u>, MD,²⁴ <u>Claudia Santos</u>, MD,²⁵ <u>Roberta H. M. Sperning</u>, Msc,²⁶ <u>Patrizia Coppadoro</u>, BSc,²⁷ <u>Giuseppe Nardi</u>, MD,²⁸ <u>Christian Brun-Buisson</u>, MD, PhD,²⁹ and <u>Marc J. M. Bonten</u>, MD, PhD²

Is use of chlorhexidine 2% mouthwash, selective oropharyngeal decontamination (SOD), or selective digestive tract decontamination (SDD) associated with reduced risk of bloodstream infections due to multidrug-resistant gram-negative bacteria among ventilated patients in intensive care units (ICUs) with moderate to high prevalence of antibiotic resistance?

Design, Setting, and Participants

Randomized trial conducted from December 1, 2013, to May 31, 2017, in 13 European ICUs where at least 5% of bloodstream infections are caused by extendedspectrum β -lactamase-producing Enterobacteriaceae. Patients with anticipated mechanical ventilation of more than 24 hours were eligible. The final date of follow-up was September 20, 2017.

Interventions

Standard care was daily CHX 2% body washings and a hand hygiene improvement program. Following a baseline period from 6 to 14 months, each ICU was assigned in random order to 3 separate 6-month intervention periods with either CHX 2% mouthwash, SOD (mouthpaste with colistin, tobramycin, and nystatin), or SDD (the same mouthpaste and gastrointestinal suspension with the same antibiotics), all applied 4 times daily.

Main Outcomes and Measures

The occurrence of ICU-acquired bloodstream infection with MDRGNB (primary outcome) and 28-day mortality (secondary outcome) during each intervention period compared with the baseline period.

Prevalence of Unitwide Carriage of Antibiotic-Resistant Microorganisms in the Rectum and Respiratory Tract (Exploratory Outcome)

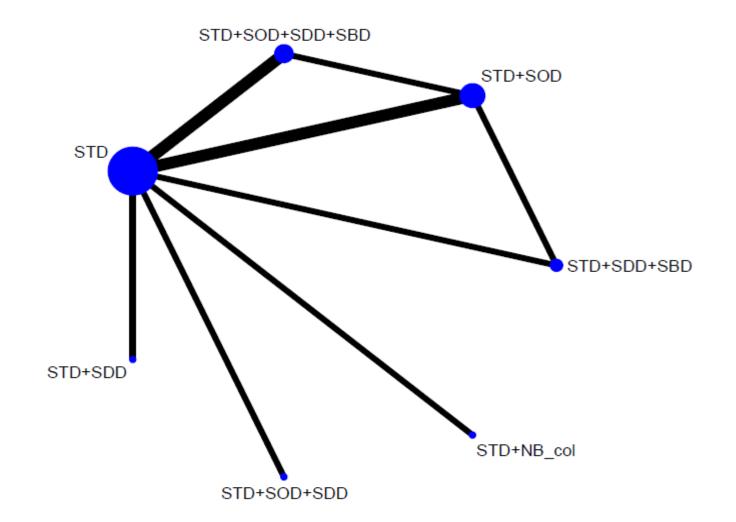
	Baseline	СНХ		SOD		SDD	
Prevalence, %	Prevalence, %	aRR (95% CI) ^{<u>a</u>}	Prevalence, %	aRR (95% CI) ^{<u>a</u>}	Prevalence, %	aRR (95% CI) ^{<u>a</u>}	
Rectum							
HRMO enterobacteriaceae	16.1	21.7	1.07 (0.99-1.16)	19.7	1.04 (0.96-1.13)	13.9	1.05 (0.95-
Third-generation cephalosporin resistance	15.8	21.5	1.07 (0.99-1.16)	19.2	1.04 (0.96-1.13)	13.7	1.07 (0.97-
Carbapenem resistance	3.2	3.1	0.68 (0.54-0.86)	2.9	0.85 (0.71-1.03)	2.6	0.80 (0.64-
Resistance to ≥3 antibiotics (or classes)	10.8	15.5	1.07 (0.97-1.19)	14.2	1.06 (0.96-1.17)	10.0	1.10 (0.97-
Colistin resistance ^b	0.5	1.6	0.81 (0.54-1.21)	1.8	0.97 (0.65-1.45)	1.3	0.96 (0.60-
					/		/

Conclusions and Relevance

Among patients receiving mechanical ventilation in ICUs with moderate to high antibiotic resistance prevalence, use of CHX mouthwash, SOD, or SDD was not associated with reductions in ICU-acquired bloodstream infections caused by MDRGNB compared with standard care.

Respiratory Tract										
HRMO Enterobacteriaceae	6.6	7.6	0.94 (0.81-1.09) 4.2	0.93 (0.80-1.09) 4.7	0.94 (0.78-1.13)					
Third-generation cephalosporin resistance	6.4	7.4	0.95 (0.82-1.10) 4.2	0.93 (0.80-1.09) 4.5	0.94 (0.78-1.13)					
Carbapenem resistance	1.4	1.1	0.71 (0.47-1.07) 0.9	0.68 (0.48-0.94) 0.5	0.59 (0.37-0.97)					
Resistance to \geq 3 antibiotics (or classes)	4.0	5.2	1.02 (0.84-1.23) 3.3	0.92 (0.76-1.12) 3.5	1.04 (0.83-1.31)					
Colistin resistance ^b	0.1	0.8	0.57 (0.29-1.14) 0.9	0.66 (0.36-1.21) 0.3	0.61 (0.30-1.22)					
HRMO glucose nonfermenting GNB	3.4	2.9	0.80 (0.64-1.00) 3.8	0.84 (0.70-1.00) 2.7	0.75 (0.58-0.96)					
MDRGNB, regardless of antibiotic susceptibility	3.8	5.2	1.16 (0.94-1.44) 3.2	0.97 (0.77-1.22) 3.6	1.04 (0.83-1.31)					
Any MDRGNB (aggregate)	12.9	15.2	0.98 (0.88-1.08) 10.3	0.93 (0.84-1.04) 10.2	0.94 (0.83-1.06)					
MRSA	1.7	1.1	0.95 (0.66-1.36) 1.3	0.77 (0.59-1.00) 1.7	0.73 (0.54-0.97)					

Evaluation of SDD/SOD on Col-R GNB Colonization


outcome	design	r	n	t	year	author	id	1	
colonization	RCT	0	33	STD	1996	Arnow PM	1	-	1.
colonization	RCT	2	36	STD+SOD+SDD+SBD	1996	Arnow PM	1	1	2.
colonization	RCT	2	395	STD	2003	de Jonge E	2	L	3.
colonization	RCT	4	378	STD+SDD+SBD	2003	de Jonge E	2	L	4.
colonization	RCT	130	881	STD	2011	de Smet	3	I	5.
colonization	RCT	112	886	STD+SOD	2011	de Smet	3	L	6.
colonization	RCT	55	828	STD+SOD+SDD+SBD	2011	de Smet	3	L	7.
colonization	RCT	3	84	STD	2015	Karvouniaris M	4	I	8.
colonization	RCT	7	84	STD+NB_col	2015	Karvouniaris M	4	L	9.
colonization	RCT	18	5881	STD+SOD	2014	Oostdijk EA	6	I	0.
colonization	RCT	35	6116	STD+SDD+SBD	2014	Oostdijk EA	6	L	1.
colonization	RCT	4	30	STD	1997	Abele-Horn M	11	I	2.
colonization	RCT	0	58	STD+SOD	1997	Abele-Horn M	11		3.
colonization	RCT	0	33	STD	2002	Agusti C	12	L	4.
colonization	RCT	0	21	STD+SDD	2002	Agusti C	12	L	5.
colonization	RCT	1	20	STD	1986	Unertl	16	L	6.
colonization	RCT	1	19	STD+SOD+SDD	1986	Unertl	16	I	7.

Prevention and Control of colistin-resistant Gram-negative bacteria: A Systematic Review and Meta-analysis

Asupon A, et al. (under preparation)

ID	Author	Year	Intervention	Decolonization regimens	
			STD	_	
16	Unertl K	1987	STD+SOD+SDD	SOD = Polymyxin, gentamicin, amphotericin B SDD = Polymyxin, gentamicin	
15	Flahauty	1000	1990 STD		-
12	Flaherty J	1990	STD+SDD	SDD = Polymyxin, gentamicin, nystatin	
17	Wiener J	1995	STD	-	
17	wierier j	1995	STD+SOD+SDD	SOD & SDD = Polymyxin, gentamicin, nystatin	
			STD	-	
1	Arnow PM 1996		STD+SOD+SDD+SBD	SOD & SDD = Colistin (polymyxin E), gentamicin, nystatin SBD = IV Cefotaxime and ampicillin	
11	Abele-Horn M	1997	STD	-	
11		1997	STD+SOD	SOD = Colistin (polymyxin E), tobramycin, amphotericin B	
12	A musti C	2002	STD	-	
12	Agusti C	2002	STD+SDD	SDD = Polymyxin, tobramycin	
			STD	_	
5	Krueger WA	2002	STD+SDD+SBD	SOD = Polymyxin, gentamicin SBD = IV Ciprofloxacin	
			STD	-	
2	de Jonge E	2003	STD+SDD+SBD	SDD = Colistin (polymyxin E), tobramycin, amphotericin B SBD = IV Cefotaxime	
			STD	-	
			STD+SCT	SCT = Chlorhexidine body washing	
14	Camus C	2005	STD+SDD	SDD = Polymyxin, tobramycin	
			STD+SDD+SCT	SDD = Polymyxin, tobramycin SCT = Chlorhexidine body washing	
			STD	-	
3	de Smet AM 2011 STD+SG		STD+SOD+SDD+SBD	SOD & SDD = Colistin (polymyxin E), tobramycin, amphotericin B SBD = IV Cefotaxime	
4	Karvouniaris M	2015	STD	-	
4	Karvouniaris M	2015	STD+NB_col	NB_col = Nebulized colistin	
			STD+SOD	SOD = Colistin (polymyxin E), tobramycin, amphotericin B	
6	Oostdijk EA	2014	STD+SDD+SBD	SDD = Colistin (polymyxin E), tobramycin, amphotericin B SBD = IV Cefotaxime or IV ceftriaxone	

1. Colonization of CoRO

Evidence of Harm

STD+NB-Col					
1.51 (0.03,91.17)	STD+SDD				
1.43	0.94	STD+SDD+SB			
(0.34,6.01)	(0.02,47.89)	D			
2.74	1.82	<u>1.92</u>	STD+SOD		
(0.72,10.45)	(0.04,88.81)	<u>(1.12,3.29)</u>	310+300		
2.22	1.47	1.55	0.81	STD+SOD+	
(0.11,44.72)	(0.01,166.23)	(0.10,24.57)	(0.05,12.15)	SDD	
<u>5.09</u>	3.37	<u>3.57</u>	<u>1.86</u>	2.30	STD
<u>(1.32,19.69)</u>	(0.07,165.80)	<u>(1.93,6.61)</u>	<u>(1.37,2.53)</u>	(0.15,34.76)	310

STD + SDD and STD + SDD + SOD lead to more Col-R colonization > STD + SOD

All decolonization regimens tend to have more Col-R colonization > STD

Conclusions

Colistin resistant GNB is preventable by infection control

Caveats: detect it early enough, need to enhance effort of IPC, avoid unnecessary use of colistin as decolonization agents

Colistin should be used in combination with other antibiotics for ecological purposes (reduce transmission of CR-GNB and Colistin resistant GNB)

It is very likely that combination approaches inclusive of STD + ASP + ENV + SCT will be the core component for control of Colistin resistant GNB

Acknowledgement

Kirati Kengkla, PharmD

Khachen Kongpakwattana, PharmD

Surasak Saokaew, PharmD

Nathorn Chaiyakunapruk, PharmD, PhD

Thank you very much for your attention

"Kob-Koon-Krub" ขอบคุณครับ