## Surveillance and Monitoring for Fungi During Construction

Dr Ling Moi Lin Director Infection Prevention & Epidemiology Singapore General Hospital

#### Introduction

- Fungal spores present a risk of opportunistic infections
  - Both exogenous and endogenous sources
- Control is essential to the safety of immunocompromised patients
  - Aspergillus sp. represent greatest "exogenous" risk

## **Controlling the patient's room**

- Room pressurization
- Directional air flow
- Re-filtration or air cleaning
  - Address both endogenous and exogenous sources of contamination



- 53 outbreaks: 1967-2005
- 458 affected patients:
  - 299 (65.3%) haematological malignancies
  - Route of transmission: air
  - Site of primary infection: lower respiratory tract (356 patients)
  - Surgical site infections (24 patients)
  - Skin infections (24 patients)

#### **Nosocomial aspergillosis**



#### **Species isolated**



#### Ventilation as a source







#### Dust: a perfect home for *Aspergillus*!









#### Surveillance

- Healthcare associated aspergillus
  - Case
  - Antifungal drug consumption
  - Invasive fungal disease in targeted groups
- Air sampling
- Water sampling



#### LETTERS TO THE EDITOR

Routine sampling of air for fungi does not predict risk of invasive aspergillosis in immunocompromised patients

- •7-year sampling period: weekly: 978 samples
- •Aspergillus spp. 16.7%: 1.8 cfu/m<sup>3</sup> 28.3 cfu/m<sup>3</sup>
- •45 cases proven IA (2.29% allo; 0.36% auto HSCT)
- •cases of IA analysed 14 and 28-days following high counts
- •Conclusion: high counts did not predict risk of developing IA

Rupp et al. JHI 2008.

#### **Particle counting**



- IQAir Particle Scan Pro Airborne Laser Counter
- 0.3µm 5µm

| <b>)</b> Æ( |
|-------------|
| natter      |
|             |

- During demolition building was sealed and water sprayed to minimise dust emission
- Particle and fungal concentrations monitored before and during demolition
- Particle concentrations significantly higher during demolition
- No difference in mould cultured at 37<sup>o</sup>C before and during demolition

#### Air quality monitoring of HEPA-filtered hospital rooms by particulate counting

Median particle counts of the patient rooms during a high risk period in 2005.



Anttila V-J, Nihtinen A, Kuutamo T, Richardson M. 2008.

# Air quality monitoring of HEPA-filtered hospital rooms by particulate counting

Particle counts of different locations

| Location                                             | Mean particle<br>count (part/l) | Range         | Number of<br>measurements |
|------------------------------------------------------|---------------------------------|---------------|---------------------------|
| 13 HEPA-filtered patient<br>rooms of adult HSCT ward | 174                             | 7-6309        | daily for 12 weeks        |
| Intensive care unit (children),<br>3 patient rooms   | 5750                            | 1370-21300    | 6 separate days           |
| Regular adult patient ward<br>- patient room         | 7450                            | 3200-10600    | hourly for one day        |
| - hallway                                            | 20870                           | 12000-29000   |                           |
| Outside air                                          | 173659                          | 110806-292624 | 6 separate days           |

Anttila V-J, Nihtinen A, Kuutamo T, Richardson M. 2008.

#### Air sampler for quantitation of viable fungal spores

| Sampler type                                         | Principle                                          | Flow rate<br>(litres/min) | Cut-off diameter<br>(d50)(um) |
|------------------------------------------------------|----------------------------------------------------|---------------------------|-------------------------------|
| Sieve impactor<br>(Anderson)                         | Impaction<br>on to agar<br>plate                   | 28.3                      | 0.65–7.0                      |
| Slit sampler<br>(e.g. Casella)                       | Impaction<br>on to rotating<br>agar plate          | 30–700                    | ~0.2                          |
| Centrifugal<br>Impactor<br>(RCS)                     | Impaction<br>due to<br>centrifugal<br>acceleration | 40                        | 4-0                           |
| Impingers<br>(e.g. AGI)                              | Impingement<br>into liquid                         | 12.5                      | 0-3                           |
| P.B.I. SAS<br>Sampler<br>(Single stage<br>impaction) | Impaction<br>on to agar<br>plate                   | 90/180                    | 2.0                           |
| Settle plates                                        | Gravity                                            | Non-volumetric            | N/A                           |
| Contact plates                                       | Surface<br>Sampling                                | Non-volumetric            | N/A                           |

#### Air sampling: SAS Super 100 and Duo





# Air sampler





# Air sampling





#### **Samplers: Andersen vs RCS**

Table 1. Fungal genera most frequently isolated with the two air samplers. Number of positive samples (%) Genera Andersen RCS sampler Penicillium 35 (83) 39 (92) Aspergillus 33 (78) 18 (42) Cladophialophora 31 (73) 20 (47) 21 (50) Fusarium Trichoderma 21 (50) Rhodotorulla 15 (35) \_ Alternaria 15 (35) Candida 14 (33) \_ Rhizopus 9 (21) Number of samples 42 42 RCS: Reuter centrifugal air sampler.

Brazilian Journal of Medical and Biological Research (2003) 36: 613-616



# **Indications for sampling**

- To <u>monitor</u> levels of contamination prior to occupancy of special controlled environments e.g. to determine efficiency of HEPA filters in laminar flow facilities
- To <u>identify</u> potential sources of nosocomial aspergillosis when a case has been identified
- To predict environmental spore contamination from outside sources
- To identify defects/breakdown in hospital ventilation/filtration systems
- To <u>correlate</u> outbreaks of invasive aspergillosis with hospital construction or demolition work
- To monitor efficiency of procedures to contain hospital building wards where at-risk patients are managed

## Method

- The air sample is aspirated through the instrument at a nominal rate of 180 litres/minute for a period of between 20 seconds and 6 minutes giving a volume range between 60 -1080 litres
- The airflow is directed towards the agar surface of a 50 mm diameter contact plate that contains 12.5 ml of agar
- The plate is then removed for incubation

#### Location of sampling

- Choice of sampling height is 1.2 metres for room hygiene, with other samples taken for exploratory purposes near suspected or potential sources of contamination.
- Multiple samples are preferable to a single sample
  - For temporal and spatial variation in spore levels within any environment.

## Sampling time

- Trial and error
- Not too long in sampling time in a heavily contaminated environment then the colonies

- confluent growth - the colonies may even be uncountable

#### Laboratory procedure

- On receipt of the contact plates, these are placed in a pre-heated incubator to 28°C for 5 days
- Identification of fungal colonies is based on colony characteristics and micro-morphological characteristics ascertained through microscopic examination at 400X magnification
- Specimens for examination should be prepared using a wet needle mount using lactophenol with cotton blue stain (0.75%)

#### Interpretation

- Levels of fungal spores vary by several orders of magnitude during the course of a day due to:
  - Activity levels in any one particular area
  - Fluctuations in temperature
  - Fluctuations in humidity
  - Fluctuations in air flow
  - Changes in light level

# Monthly meteorological data for the period studied, including rain, mean temperature, wind speed and RH (%)



R. Tormo-Molina et al. / Rev Iberoam Micol. 2012;29(4):227-234

#### Seasonal pattern with peaks in summer



#### Interpretation

- Outdoor air (Note: seasonal variation recognised):
  - Total fungal count:  $10^3$  to  $10^5$  CFU/m<sup>3</sup>,
  - Aspergillus: 0.2-3.5 conidia/m<sup>3</sup>
- HEPA filtered air (>95% efficiency and >10 air changes per hour) – < 0.1 CFU/m<sup>3</sup>
- No air filtration: 5.0 conidia/m<sup>3</sup>
- Construction/defective ventilation: 2.3-5.9 conidia/m<sup>3</sup>
- If total fungal count exceeds 1.0 CFU/m<sup>3</sup> on several occasions the air systems or procedural practice in patent areas requires intensive evaluation

# Recommend to do further investigation of sources of contamination

- Total indoor counts > outdoor counts
- Comparison of indoor and outdoor levels of fungal organisms show one of the following:
  - Organisms are present in the indoor sample and not in the outdoor sample
  - The predominant organisms found in the indoor sample is different from the predominant organism in the outdoor sample
- A monoculture of an organism is found in the indoor sample. It may be absent from samples taken in other areas of the building
- Persistently high counts

# Air sampling

- Targeted air sampling
- Written, defined, standardised, multidisciplinary protocol for sample collection and culturing
- Analysis and interpretation of results should use scientifically determined or anticipatory baseline values for comparison
- Expected actions, based on the results obtained, should also be defined

Chang CC. Internal Medicine Journal 44 (2014)

#### **Recommended results analysis**

- Best to look at performance trend and correlate with activities
- Exposure level of <5 CFU/m<sup>3</sup> of Aspergillus spp. in protective isolation areas
- <0.1 CFU/m<sup>3</sup> in HEPA-filtered environments, with limits of 15 CFU/m<sup>3</sup> for total colony counts of all fungal organisms

Guidelines for Environmental Infection Control in Health-Care Facilities. Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC).

Morris G, Kokki MH, Anderson K, Richardson MD. Sampling of Aspergillus spores in air. J Hosp Infect 2000; 44: 81–92

Munoz P, Burillo A, Bouza E. Environmental surveillance and other control measures in the prevention of nosocomial fungal infections. Clin Microbiol Infect 2001

#### **Further actions**

- Start appropriate antifungal prophylaxis or pre-emptive therapy if not already used
- Perform an intensive retrospective review of microbiological, histopathological and post-mortem records for other cases
- Alert clinicians caring for high risk patients to the possibility of infection
- Establish a system for prospective surveillance of patients and their environment for additional cases
- If further cases arise in the absence of a nosocomial source consider monitoring home environments of patients pre-admission

#### **Persistent high counts**

- Sample:
  - dust
  - fabrics
  - ventilation ducts/screens/fans
  - ceiling voids
  - kitchen areas
  - excreta of roosting birds in close proximity of windows

#### Airborne Aspergillus contamination during hospital construction works: Efficacy of protective measures

Isabelle Fournel, MD,<sup>a</sup> Marc Sautour, PhD,<sup>b</sup> Ingrid Lafon, MD,<sup>c</sup> Nathalie Sixt, MD,<sup>b</sup> Coralie L'Ollivier, PhD,<sup>b</sup> Frédéric Dalle, PharmD, PhD,<sup>b</sup> Pascal Chavanet, MD, PhD,<sup>d</sup> Gérard Couillaud, MD,<sup>e</sup> Denis Caillot, MD,<sup>c</sup> Karine Astruc, MD,<sup>a</sup> Alain Bonnin, MD, PhD,<sup>b,f</sup> and Ludwid-Serge Aho-Glélé, MD<sup>a</sup> Dijon, France

|                                       | Before  | work | During  | work |     |
|---------------------------------------|---------|------|---------|------|-----|
| Air treatment system                  | N       | %    | N       | %    | P   |
| None                                  | 58/93   | 62.4 | 53/95   | 55.8 | .36 |
| HEPA filtration                       | 0/134   | 0    | 2/234   | 0.8  | .54 |
| Plasmair                              | 42/248  | 16.9 | 85/497  | 17.1 | .95 |
| Aspergillus airborne<br>contamination | 100/475 | 21.1 | 140/826 | 16.9 | .07 |

# AIIC major articles

#### The impact of portable high-efficiency particulate air filters on the incidence of invasive aspergillosis in a large acute tertiary-care hospital

Zakir-Hussain Abdul Salam, MBBS, MS, MPH,<sup>a</sup> Rubiyah Binte Karlin, BHSc,<sup>b</sup> Moi Lin Ling, MBBS, FRCPA,<sup>b</sup> and Kok Soong Yang, MBBS, MMedPH<sup>a</sup> Singapore (Am J Infect Control 2010;38:e1-e7.)

|                                  |                                                                                                                                                               | Incidence rate (per                             |                                              |                      |                                                          |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------|----------------------------------------------------------|
| Ward group                       | Ward type                                                                                                                                                     | Period I<br>(December 2005<br>to November 2006) | Period II<br>(December 2006<br>to June 2008) | P value              | RR (95% CI)                                              |
| Group I<br>Group II<br>Group III | Wards with portable HEPA filters deployed December 2006<br>Wards with only fixed HEPA filters during the entire study period<br>Wards with no HEPA filtration | 0.35<br>0.16<br>0.088                           | 0.17<br>0.31<br>0.075                        | .013<br>.061<br>.623 | 1.98 (1.11-3.51)<br>0.51 (0.28-0.93)<br>1.17 (0.44-3.10) |

Table 1. Incidence rates and RRs of IA in different ward groups during the study period



Clinical Microbiology and Infection, Volume 21 Number 3, March 2015

# Environmental cultures performed during an outbreak of fusariosis in a children's cancer hospital

| Room<br>number                | Cultures of the water | of  | Cultures of swabs | Air<br>cultur | es    | Cultures of water after hyperchlorination | Cultures              | ;     |         |           |
|-------------------------------|-----------------------|-----|-------------------|---------------|-------|-------------------------------------------|-----------------------|-------|---------|-----------|
|                               | June 2009             |     | Drains and taps   |               |       | August 2009                               | January to March 2010 |       |         |           |
|                               | Shower                | Тар |                   | Dry           | Humid | Shower                                    | Swabs                 | Water | Dry air | Humid air |
|                               | +                     | +   | ND                | _             | -     | _                                         | _                     | -     | +       | _         |
| 2                             | +                     | +   | +                 | +             | -     | -                                         | +                     | -     | -       | +         |
| 3                             | +                     | +   | +                 | +             | +     | -                                         | -                     | -     | -       | -         |
| 4                             | -                     | -   | ND                | ND            | ND    | ND                                        | ND                    | ND    | ND      | ND        |
| 5                             | -                     | -   | ND                | ND            | ND    | -                                         | -                     | -     | -       | -         |
| 6                             | -                     | -   | ND                | ND            | ND    | -                                         | -                     | -     | ND      | ND        |
| 7                             | +                     | +   | +                 | +             | -     | -                                         | -                     | -     | +       | +         |
| 8                             | +                     | +   | ND                | -             | -     | -                                         | -                     | -     | -       | -         |
| 9                             | -                     | -   | ND                | ND            | ND    | -                                         | -                     | -     | -       | -         |
| 10                            | -                     | -   | ND                | ND            | ND    | -                                         | -                     | -     | -       | -         |
| 11                            | -                     | -   | ND                | ND            | ND    | -                                         | -                     | -     | +       | -         |
| 12                            | -                     | -   | ND                | ND            | ND    | -                                         | +                     | -     | -       | -         |
| 13                            | -                     | -   | ND                | ND            | ND    | -                                         | +                     | -     | -       | -         |
| 14                            | ND                    | ND  | ND                | ND            | ND    | ND                                        | ND                    | ND    | ND      | ND        |
| 15                            | -                     | -   | ND                | -             | -     | _                                         | -                     | -     | -       | +         |
| Isolation room 1*             | ND                    | ND  | ND                | ND            | ND    | _                                         | -                     | -     | +       | -         |
| Isolation room 2 <sup>*</sup> | +                     | +   | -                 | -             | -     | -                                         | +                     | -     | +       | +         |

+, positive for *Fusarium*; -, negative for *Fusarium*; ND, not done; Humid, air collected during the flow of the shower in the adjacent bathroom; Dry, air collected before the shower was opened in the adjacent bathroom.

\*For transplant patients.

Clinical Microbiology and Infection, Volume 21 Number 3, March 2015



Mesquita-Rocha et al. BMC Infectious Diseases 2013, 13:289

- 1L samples from water taps and tanks were collected every 30– 40 days using sterile one-litre glass containers
- Filtered and cultured on SDA plates for 15 days at 25<sup>o</sup>C and 37<sup>o</sup>C



#### Mould in tap water

- Free residual chorine rate varied from 0.14-0.89 mg/mL, with a mean of 0.38 mg/mL
  - Consistent with those established by the Brazilian Ministry of Health, ordinance no 518/2004, which set the standard for drinking water in Brazil
  - Mould conidia may be more resistant to chlorine (Rosenzweig WD, Minnigh HA, Pipes WO: Chlorine demand and inactivation of fungal propagules. Appl Environ Microbiol 1983, 45:182–186)

#### Water sampling

- High-risk patients avoid drinking tap water
- Targeted water sampling should be considered in comprehensive investigations of healthcare-associated fungal outbreaks

#### Conclusion

- Surveillance
- Monitoring
  - Sample as and when required
  - Follow up results over time
  - Use the service of a professional vendor
- Environment hygiene is one of core component of the IPC program

- Air, water, general environment cleanliness (hygiene)

THANK YOU