Preventing Ventilator-Associated Pneumonia: Review of the Evidence

Hong Kong Symposium on Prevention of Healthcare-associated Infections in Hospitals and Community Institutions

January 19, 2019

Michael Klompas MD, MPH, FIDSA, FSHEA

Harvard Medical School, Harvard Pilgrim Health Care Institute, and Brigham and Women's Hospital, Boston, MA

Disclosures

• Grant funding

- Centers for Disease Control and Prevention
- Massachusetts Department of Public Health
- Royalties
 - UpToDate

Ventilator-associated pneumonia

- Affects ~5-10% of ventilated patients
- Increases ICU length of stay by ~4-7 days
- Increases hospital length of stay by ~14 days
- Crude mortality rate 30-50%
- Attributable mortality 8-12%
- Adds ~\$10,000 to \$40,000 to cost of hospital stay

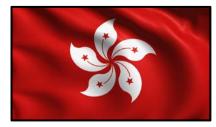
Safdar et al, *Crit Care Med* 2005; 33:2184 Tejerina et al, *J Crit Care* 2006; 21:56 Muscedere et al, *J Crit Care* 2008;23:5-10 Eber et al, *Arch Intern Med* 2010;170:347-353 Nguile-Makao et al, *Intensive Care Med* 2010;36:781-9 Melsen et al, *Lancet Infect Dis* 2013;13:665-671 Kollef et al., *Infection Control Hosp Epidemiol* 2012;33:250-256 Ohannessian et al. *Crit Care Med* 2018;46:1093-1098

VAP?

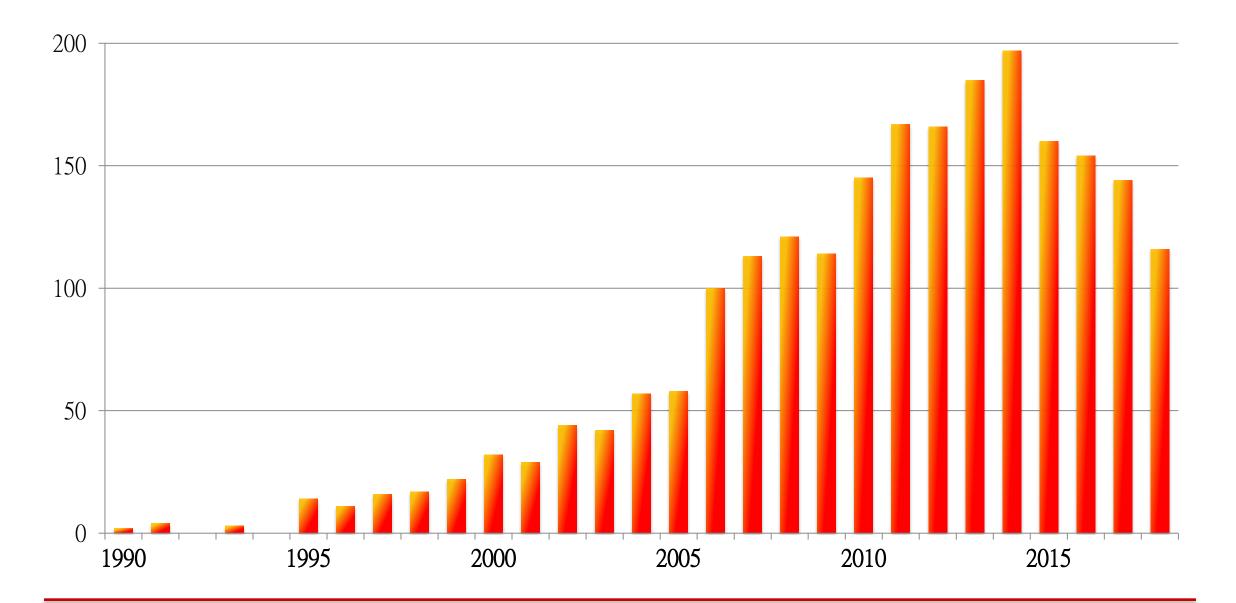
NOT ON MY WATCH.

from doctorrw.blogspot.com

Guidelines for Preventing Health-Care–Associated Pneumonia, 2003


Defining, treating and preventing hospital acquired pneumonia: European perspective

Comprehensive evidence-based clinical practice guidelines for ventilator-associated pneumonia: Prevention $\stackrel{\bigstar}{\sim}$



Strategies to Prevent Ventilator-Associated Pneumonia in Acute Care Hospitals

Recommendations on Prevention of Ventilator-Associated Pneumonia

Count of VAP Prevention Publications by Year PubMed, 1990-2018

Potential Strategies to Prevent VAP

- 1. Avoid intubation
- 2. Minimize sedation
- 3. Daily interruption of sedation
- 4. Spontaneous breathing trials
- 5. Early mobility
- 6. Head of bed elevation
- 7. Trendelenburg position
- 8. Subglottic secretion drainage
- 9. Maintain ETT cuff pressure
- 10. Tapered endotracheal cuffs
- 11. Ultrathin polyurethane cuffs
- 12. Avoid inhalers
- 13. Closed suctioning systems
- 14. Avoid patient transport
- 15. Tight glycemic control

- 16. Improve hand hygiene
- 17. Regular oral care
- 18. Toothbrushing / scaling
- 19. Oral care with chlorhexidine
- 20. Oral decontamination
- 21. Digestive decontamination
- 22. Use probiotics
- 23. Early enteral feeding
- 24. Acidify gastric contents
- 25. Avoid gastric distention
- 26. Silver-coated ETT tubes
- 27. Mucous shaver
- 28. Early tracheostomy
- 29. Change vent circuits only when soiled

- 30. Saline instillation prior to suctioning
- 31. Non-invasive positive pressure ventilation
- 32. High flow O2 by nasal cannula
- 33. Prophylactic antibiotics
- 34. Even to negative fluid balance
- 35. Minimize blood tranfusions
- 36. Avoid paralytics
- 37. Conduct VAP surveillance
- 38. Educate staff
- 39. Provide feedback to staff on rates and processes
- 40. Bundle interventions

Strategic Framework to Prevent VAP

Avoid intubation if possible

- High flow O2 by nasal cannula
- Non-invasive positive pressure ventilation

Minimize duration of intubation

- Minimize sedation
- Spontaneous awakening trials

Reduce colonization of the aerodigestive tract

- Regular oral care
- Oral antiseptics

- Spontaneous breathing trials
- Early mobility

Probiotics

• Oral / digestive decontamination

Minimize aspiration of secretions around endotracheal tube cuff

- Head of bed elevation
- Subglottic secretion drainage

- Maintain cuff pressure
- Novel cuff materials & shapes

Minimize contamination of equipment

- Silver-coated endotracheal tubes
- Mucous shaver

• Change vent circuits only when soiled

How do we choose from this list?

What works?

What should we prioritize?

The VAP Prevention Paradox

	VAP Rates	Vent Days	ICU Days	Hospital Days	Death
Oral care with chlorhexidine					
Silver-coated endotracheal tubes					
Subglottic secretion drainage					
Head-of-bed elevation					

Many strategies lower VAP rates but have no impact on other outcomes!

Why the mismatch?

Reasons for the Prevention Paradox

VAP diagnosis is subjective

The case of oral care with chlorhexidine

VAP diagnosis is non-specific The case of silver-coated ETTs & subglottic secretion drainage

Many VAP studies are under-powered

The case of head of bed elevation

Reasons for the Prevention Paradox

VAP diagnosis is subjective

The case of oral care with chlorhexidine

VAP diagnosis is non-specific The case of silver-coated ETTs & subglottic secretion drainage


Many VAP studies are under-powered

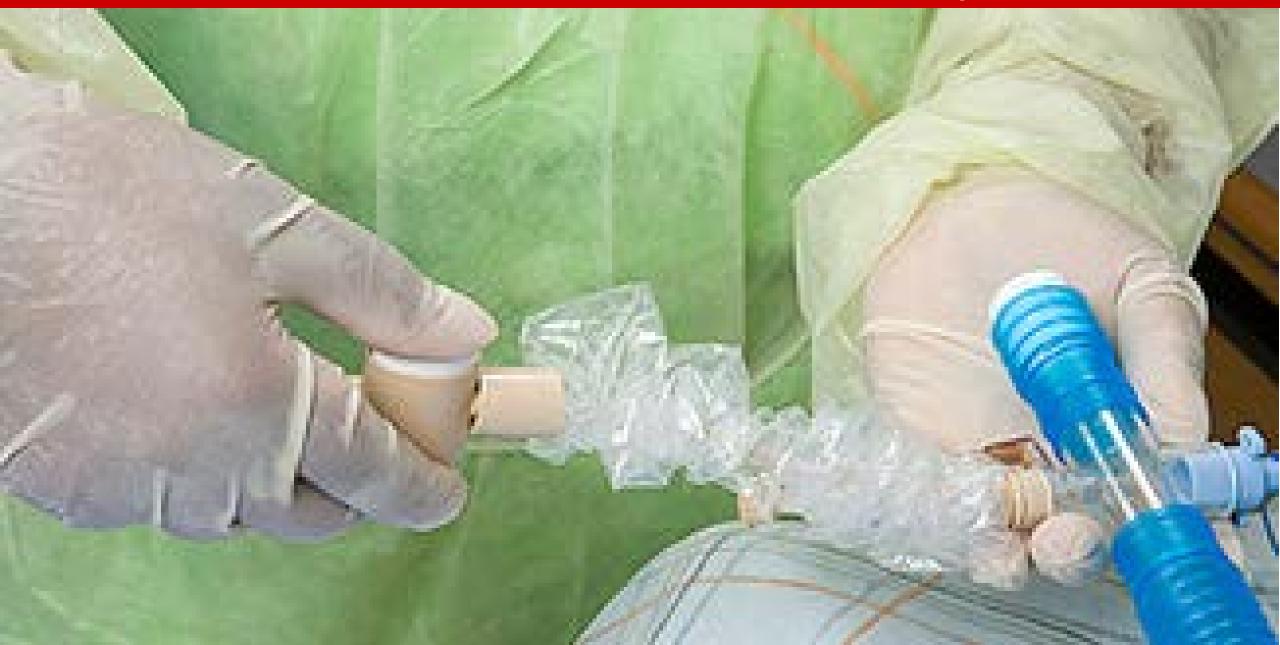
The case of head of bed elevation

Oral Care with Chlorhexidine

Meta-analysis of Randomized Studies: *lower* VAP rates

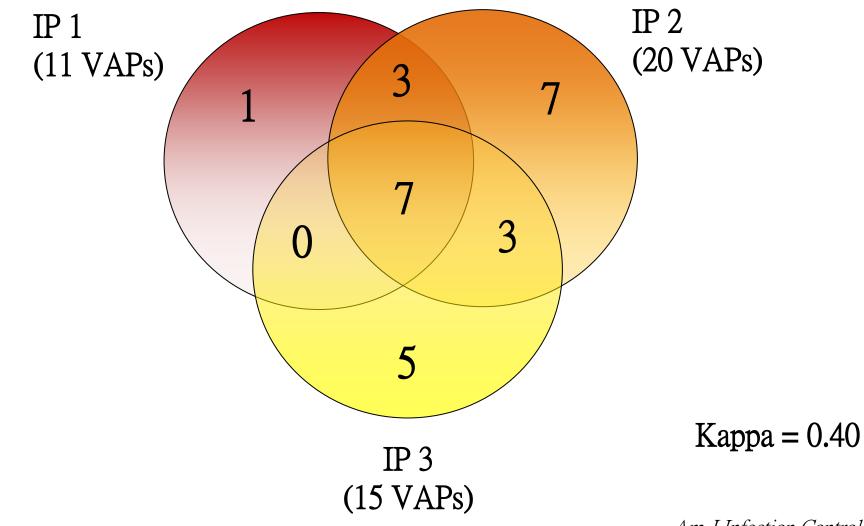
Chlorhexidine									
De Riso et al (1996) ¹⁸	3	173	9	180	3-8%				
Fourrier et al (2000) ¹³	5	30	18	30	7-0%				
Houston et al (2002) ²⁰	4	270	9	291	4-4%				
MacNaughton et al (2004) ²²	32	91	28	88	14.1%				
Grap et al (2004) ¹⁴	4	7	3	5	5-9%				
Fourrier et al (2005) ¹⁹	13	114	12	114	8-3%				
Bopp et al (2006) ¹⁷	0	2	1	3	0-9%				
Koeman et al (2006) ²¹	13	127	23	130	9.9%				
Tantipong et al (2008) ²³	5	102	12	105	5-5%				
Scannapieco et al (2009) ²⁶	14	116	12	59	8-8%				
Bellisimo-Rodriguez et al (2009) ²⁴	16	64	17	69	10-6%				
Panchabhai et al (2009) ²⁵	14	88	15	83	9-4%				
Subtotal (95% CI)		1184		1157	88-5%				
Total events	123		159						
Heterogeneity: τ²=0·06, χ²=15·54, df=11 (p=0·16); l²=29%									

0.35 (0.10-1.26) 0.28 (0.12-0.65) 0.48 (0.15-1.54) 1.11 (0.73-1.67) 0.95 (0.36-2.49) 1.08 (0.52-2.27) 0.44 (0.03-7.52) 0.58 (0.31-1.09) 0.43 (0.16-1.17) 0.59 (0.29-1.20) 1.01 (0.56-1.83) 0.88 (0.45-1.71) 0.72 (0.55-0.94)


Test for overall effect: Z=2.40 (p=0.02)

Lower VAP Rates Risk Ratio 0.72 (0.55-0.94)

Does this patient have VAP?

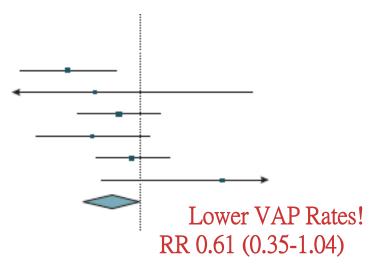


Are there more secretions today?

Interobserver Agreement in VAP Diagnosis

50 ventilated patients with respiratory deterioration

Am J Infection Control 2010:38:237


VAP Prevention Studies are at High Risk for Bias

Especially Open Label studies

Open Label vs Double Blind Studies


Open Label Randomized Controlled Trials:

Open-label Studies					
Fourrier et al, ²⁰ 2000	5	30	18	30	0.28 (0.12-0.65)
Bopp et al, ²² 2006	0	2	1	3	0.44 (0.03-7.52)
Jafari et al, ¹⁹ 2007	9	40	13	40	0.69 (0.33-1.43)
Tantipong et al, ²⁴ 2008	5	102	12	105	0.43 (0.16-1.17)
Panchabhai et al, ²⁶ 2009	14	88	15	83	0.88 (0.45-1.71)
Berry et al, ²⁸ 2011	4	71	1	78	4.39 (0.50-38.39
Subtotal	37	333	60	339	0.61 (0.35-1.04)

Double-Blind Randomized Controlled Trials:

Macnaughton et al,18 2004	32	91	28	88	1.11 (0.73-1.67)
Fourrier et al, ²¹ 2005	13	114	12	114	1.08 (0.52-2.27)
Koeman et al, ²³ 2006	13	127	23	130	0.58 (0.31-1.09)
Bellissimo-Rodrigues et al, 25 2009	16	64	17	69	1.01 (0.56-1.83)
Scannapieco et al, ²⁷ 2009	14	116	12	59	0.59 (0.29-1.20)
Ozcaka et al, ³⁰ 2012	12	32	22	34	0.58 (0.35-0.97)
Meinberg et al, ²³ 2012	18	28	11	24	1.40 (0.84-2.35)
Subtotal	118	572	125	518	0.88 (0.66-1.16)

Need to look at objective outcomes

Duration of Mechanical Ventilation

Randomized trials of oral care with chlorhexidine vs control solution

	Chlorhexi	dine	Contro	l	Mean Difference	Favors : Favors Weight
Study or Subgroup	Mean (SD)	Total	Mean (SD)	Total		Chlorhexidine Control %
Double-blind Studies						
Fourrier et al, ²¹ 2005	11.7 (8.7)	114	10.6 (8.7)	114	1.10 (-1.16 to 3.36)	28.3
Koeman et al, ²³ 2006	9.2 (12)	127	7 (8.1)	130	2.20 (-0.31 to 4.71)	26.1
Scannapieco et al, ²⁷ 2009	8.4 (5.2)	50	9.7 (6.3)	49	-1.30 (-3.58 to 0.98)	28.1
Ozcaka et al, ³⁰ 2012	9 (8.3)	32	12.3 (11.9)	34	-3.30 (-8.23 to 1.63)	12.3
Subtotal		323		327	0.13 (-1.90 to 2.17)	94.8
Total		353		357	-0.15 (-2.18 to 1.89)	100.0
All Studies						
Total		838		826	0.01 (-1.12 to 1.14)	100.0
						-10 -5 0 5 10
						Mean Difference (95% CI)

No Difference! Mean Difference 0.01 days (-1.12 to 1.14)

JAMA Internal Med 2014;174:751-761

ICU Length of Stay

Randomized trials of oral care with chlorhexidine vs control solution

	Chlorhexid	ine	Contro	l	Mean Difference	Favors Favors Weight,
Study or Subgroup	Mean (SD)	Total	Mean (SD)	Total	(95% CI)	Chlorhexidine Control %
Double-blind Studies						
Fourrier et al, ²¹ 2005	14 (8.5)	114	13.3 (8.8)	114	0.70 (-1.55 to 2.95)	43.9
Koeman et al, ²³ 2006	13.8 (17.4)	127	12.5 (12.9)	130	1.30 (-2.45 to 5.05)	15.7
Scannapieco et al, ²⁷ 2009	11 (6.8)	50	11.3 (6.7)	49	-0.30 (-2.96 to 2.36)	31.3
Ozcaka et al, ³⁰ 2012	12.7 (11.3)	32	15.4 (13.5)	34	-2.70 (-8.69 to 3.29)	6.2
Subtotal		323		327	0.26 (-1.25 to 1.77)	97.2
Total		353		357	0.08 (-1.41 to 1.57)	- 100.0
All Studies						
Total		838		826	-0.10 (-0.25 to 0.05)	100.0
						-10 -5 0 5 10
						Mean Difference (95% CI)

No Difference! Mean Difference -0.10 days (-0.25 to 0.05)

JAMA Internal Med 2014;174:751-761

Mortality

	Chlori	nexidine	Co	ntrol	Risk Ratio	Favors	Favors	Weight,
tudy or Subgroup	Events	Patients	Events	Patients	(95% CI)	Chlorhexidine	Control	%
Non-Cardiac Surgery Studies								
Open-label Studies								
Fourrier et al, ²⁰ 2000	3	30	7	30	0.43 (0.12-1.50)			1.0
Tantipong et al, ²⁴ 2008	36	102	37	105	1.00 (0.69-1.45)			12.1
Panchabhai et al, ²⁶ 2009	64	88	51	83	1.18 (0.96-1.46)		-	36.3
Subtotal	103	220	95	218	1.06 (0.80-1.41)	<	>	49.5
Double-blind Studies								
Macnaughton et al, ¹⁸ 2004	36	91	33	88	1.05 (0.73-1.53)			12.0
Fourrier et al, ²¹ 2005	31	114	24	114	1.29 (0.81-2.06)			7.6
Koeman et al, ²³ 2006	49	127	39	130	1.29 (0.91-1.81)	<u> </u>		14.1
Scannapieco et al, ²⁷ 2009	16	97	8	49	1.01 (0.46-2.20)			2.7
Ozcaka et al, ³⁰ 2012	19	32	20	34	1.01 (0.68-1.51)			10.2
Meinberg et al, ²⁹ 2012	13	28	9	24	1.24 (0.65-2.38)			3.9
Subtotal	164	489	133	439	1.15 (0.96-1.38)	(1)	>	50.5
Total	267	709	228	657	1.13 (0.99-1.29)		>	100.0
All Studies								
Total	283	1637	247	1597	1.13 (0.99-1.28)			100.0
						0.1 1.(Risk Ratio		10
					Tre	nd to High	her M	ortality!
al Med 2014:174:751-76	1					RR 1.13 (0.	99 to 1.2	28)

. .

JAMA Internal Med 2014;174:751-761

Second Meta-Analysis of RCTs: *Significantly Higher* Mortality

Study	No of ever	nts/total Control	Mortality Odds ratio, M-H	Weight	Mortality Odds ratio, M-H
,			random (95% CI)	(%)	random (95% CI)
Fourier 2000	3/30	7/30		2	0.37 (0.08 to 1.58)
MacNaughton 2004	29/101	29/93	-	8	0.89 (0.48 to 1.64)
Fourrier 2005	31/114	24/114		9	1.40 (0.76 to 2.58)
Koeman 2006	49/127	39/130		12	1.47 (0.87 to 2.46)
Tantipong 2008	36/102	37/105	+	10	1.00 (0.57 to 1.77)
Scannapieco 2009	19/116	9/59		4	1.09 (0.46 to 2.58)
Bellissimo-Rodrigues 2009	9 35/98	33/96	+	9	1.06 (0.59 to 1.91)
Munro 2009	69/275	47/272		18	1.60 (1.06 to 2.43)
Panchabhai 2009	78/224	70/247	+	21	1.35 (0.91 to 2.00)
Cabov 2010	1/30	3/30		<1	0.31 (0.03 to 3.17)
Berry 2011	17/71	28/154	+	7	1.42 (0.72 to 2.80)
Total (95% CI)	367/1288	326/1330		100	1.25 (1.05 to 1.50)
Test for heterogeneity: $\tau^2=0$.00, χ ² =8.4	1,	0.01 0.1 1 10 1	00	Odds Ratio
df=10, P=0.59, ² =0%			Favours Favou	irs	1.25 (1.05-1.50)
Test for overall effect: z=2.4	7, P=0.01		experimental cont		1.23 (1.03-1.30)

BMJ 2014;348:g2197

Independent Signal

Original Investigatio

Associations Between Ventilator Bundle Components and Outcomes

Michael Klompas, MD, MPH; Lingling Li, PhD; Ken Kleinman, ScD; Paul M. Szumita, PharmD; Anthony F. Massaro, MD

IMPORTANCE Ventilator bundles, including head-of-bed elevation, sedative infusion interruptions, spontaneous breathing trials, thromboprophylaxis, stress ulcer prophylaxis, and oral care with chlorhexidine gluconate, are ubiquitous, but the absolute and relative value of each bundle component is unclear. Invited Commentary
Related article
Supplemental content at
ismainternalmedicine.com

Author Affiliations: Department of

Medical School and Harvard Pilgri Health Care Institute, Boston, Massachusetts (Klompas, L),

Kleinman): Department of Medicin

Massaro); Department of Pharmacy Brigham and Women's Hospital.

Boston, Massachusetts (Szumita) Corresponding Author: Michael

Klompas, MD, MPH, Department of Population Medicine, Harvard Medical School, 401 Park St, Ste 401

Boston, MA 02215 (mklompa

ners.org)

Brigham and Women's Hospital, Roston, Massachusetts (Kiompas

Population Medicine, Harvard

OBJECTIVE To evaluate associations between individual and collective ventilator bundle components and ventilator-associated events, time to extubation, ventilator mortality, time to hospital discharge, and hospital death.

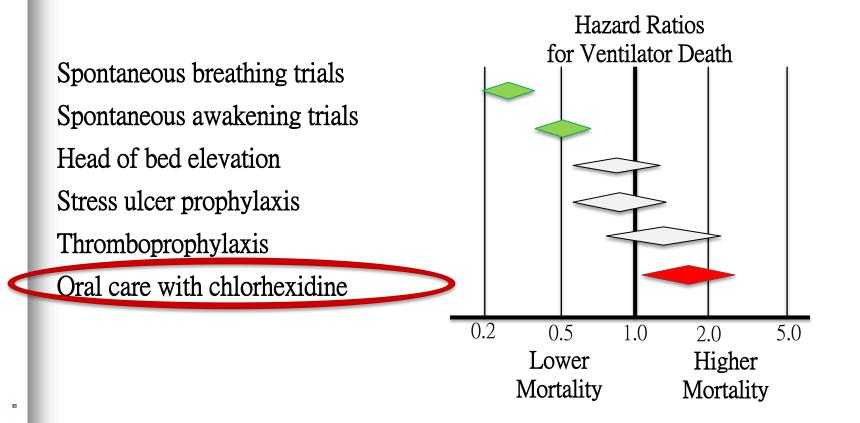
DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study included all 5539 consecutive patients who underwent mechanical ventilation for at least 3 days from January 1, 2009, to December 31, 2013, at Brigham and Women's Hospital.

EXPOSURES Head-of-bed elevation, sedative infusion interruptions, spontaneous breathing trials, thromboprophylaxis, stress ulcer prophylaxis, and oral care with chlorhexidine.

MAIN OUTCOMES AND MEASURES Hazard ratios (HRs) for ventilator-associated events, extubation alive vs ventilator mortality, and hospital discharge vs hospital discht. Effects were modeled using con proportional hazards regression and Fine-Graz competing risk models adjusted for patients' demographic characteristics, comorbidities, unit type, severity of illness, recent procedures, process measure contraindications, day-to-day markers of clinical status, and calendar year.

RESULTS Of 5539 consecutive patients undergoing mechanical ventilation, 3208 were male (579%), 2331 female (42,1%), and the mean (50) age was 61.2 (16.1) years. Sedative Influsion Interruptions were associated with less time to extubation (HR, 131, 155% C), 154-212; P < 0.001) and a lower hazard for ventilator mortality (HR, 0.51, 55% C), 0.38-0.68, P < 0.001. Similar associations were found for spontaneous breathing trials (HR for extubation, 2.48; 95% C), 232-276, P < 0.001. HR for mortality, 0.28, 95% C), 0.20-0.38, P = .001. Spontaneous breathing trials (HR for extubation, 2.48; 95% C), 0.20-0.38, P = .001. Spontaneous breathing trials (HR, 0.55; 95% C), 0.20-0.38, P = .001. Spontaneous breathing trials were also associated with lower hazards for ventilator-associated events (HR, 0.55; 95% C), 0.40-0.76; P < .001. Hat one the suture to extubation (HR, 138, 95% C), 1.14-168, P = .001) and thromboembolism prophylaxis (HR, 2.57, 95% C), 1.80-3.66, P < .001 but not ventilator mortality (HR, 1.38; 95% C), 1.15-3.1; P = .006), and stress ulcer prophylaxis was associated with an increased risk for ventilator-associated prophylaxis (HR, 1.52; 95% C), 1.16-3.1; P = .006).

CONCLISIONS AND BELEVANICS: Standard ventilator bundle components vary in their associations with patient-centered outcomes. Head-of-bed elevation, sedative infusion interruptions, spontaneous breathing trials, and thromboembolism prophylaxis appear beneficial, whereas daily oral care with chlorhexidine and stress ulcer prophylaxis may be harmful in some patients.


JAMA Intern Med. doi:103001/jamainternmed.2016.2422 Published online July 18, 2016.

Copyright 2018 American Medical Association. All rights reserved

paded From: http://archinte.jamanetwork.com/ by a Harvard University User on 07/18/2010

Retrospective cohort analysis 5,539 patients on mechanical ventilation

adjusted for comorbidities, severity of illness, contraindications, etc.

But what's the mechanism?

Oral Ulcers Associated with 2% Chlorhexidine

Bleeding Ulcer

White Plaques

Intensive Care Med 2016;42:620-621

Oral Ulcers Associated with 2% Chlorhexidine

Bleeding Mouth

Dry Tongue, Apthous Lesions

Intensive Care Med 2016;42:620-621

Case Reports of Allergies and Anaphylaxis

ORIGINAL ARTICLE

ANAPHYLAXIS

Standardized testing with chlorhexidine in perioperative allergy – a large single-centre evaluation

M. S. Opstrup^{1,2}, H.-J. Malling², M. Krøigaard², H. Mosbech², P. S. Skov², L. K. Poulsen² & L. H. Garvey²

¹National Allergy Research Centre, Copenhagen University Hospital Gentofte; ²Allergy Clinic, Danish Anaesthesia Allergy Centre, Copenhagen University Hospital Gentofte, Gentofte, Denmark *9% of perioperative allergic reactions attributed to chlorhexidine*

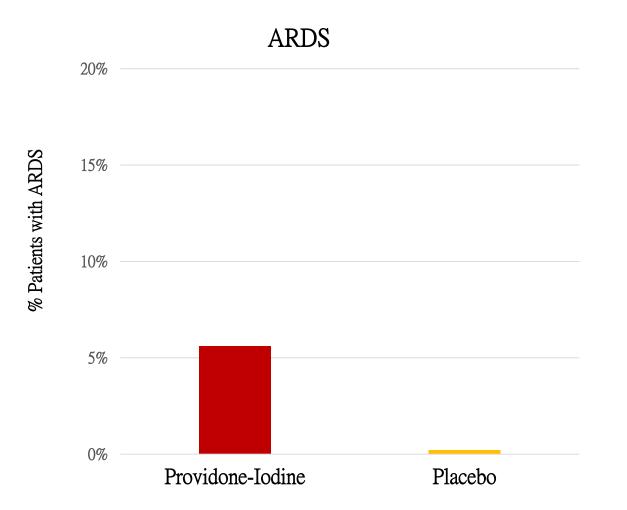
Acta Anaesthesiol Scand 2001; 45: 1290–1294 Printed in Denmark. All rights reserved Copyright © Acta Anaesthesiol Scand 2001

ACTA ANAESTHESIOLOGICA SCANDINAVICA ISSN 0001-5172

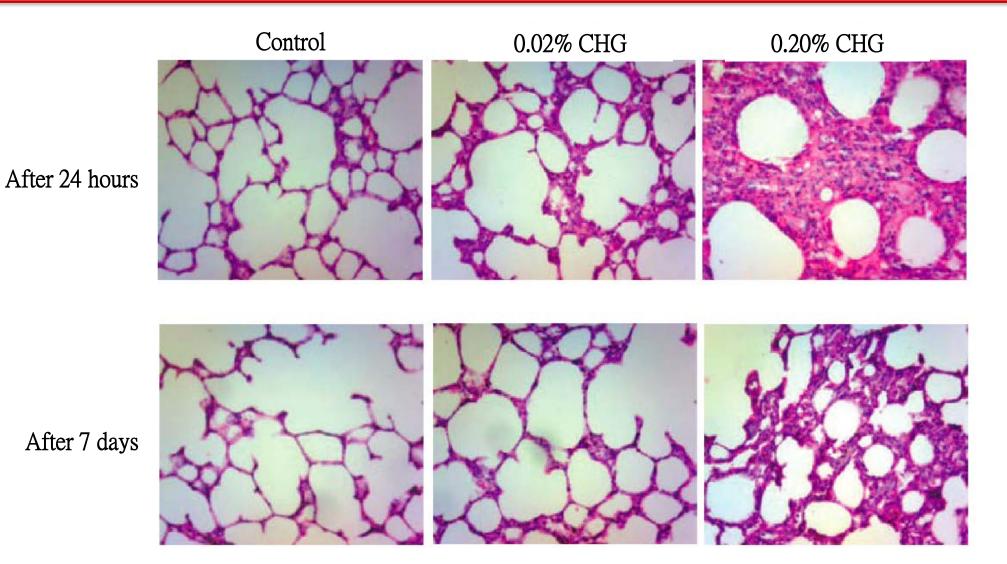
Case Report

Anaphylactic reactions in anaesthetised patients – four cases of chlorhexidine allergy

L. H. GARVEY¹, J. ROED-PETERSEN² and B. HUSUM¹ Departments of ¹Anaesthesiology and ²Dermatology, Gentofte University Hospital, Copenhagen, Denmark Case reports of anaphylaxis


Allergy 2014;69(10):1390-1396 *Acta Anaesthesiol Scand* 2001;45:1290-1294

Case Reports of ARDS following Aspiration


Aspiration of Oral Antiseptics and ARDS

Randomized controlled trial of providone-iodine vs placebo to prevent VAP

Crit Care Med 2014;42:1-8

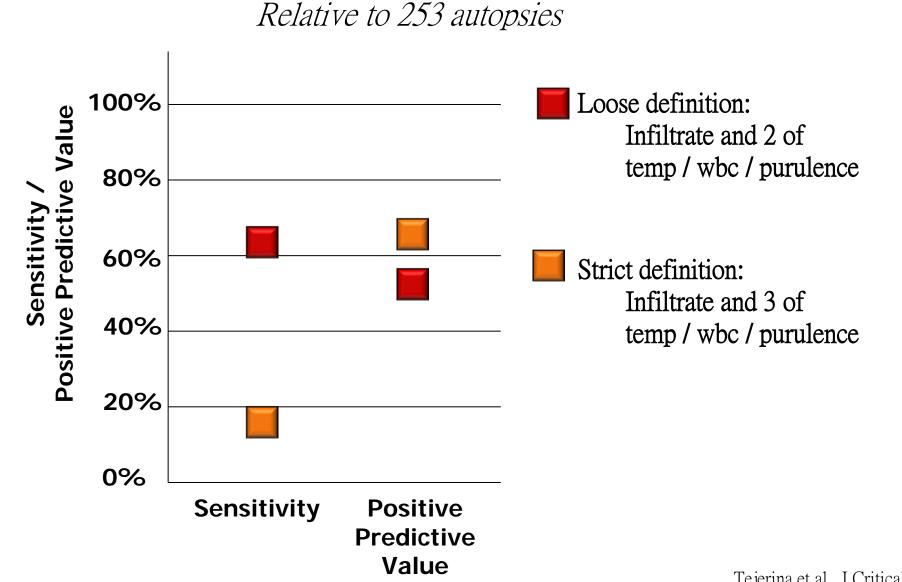
Chlorhexidine Instillation into Rat Lungs

Human and Experimental Toxicology 2011;30:1795-1803

Reasons for the Prevention Paradox

VAP diagnosis is subjective

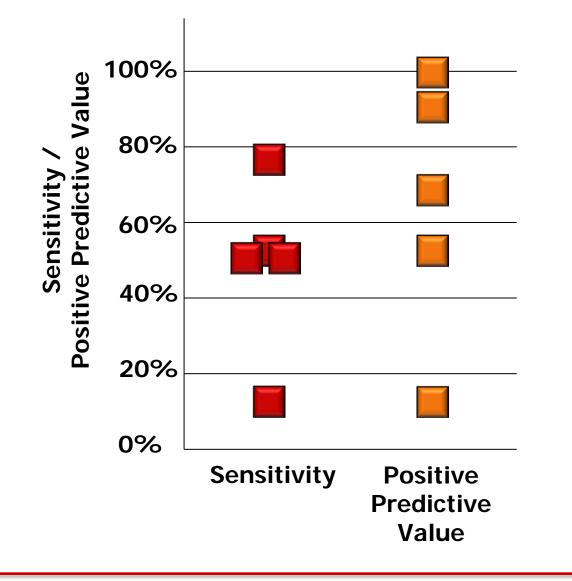
The case of oral care with chlorhexidine


VAP diagnosis is non-specific

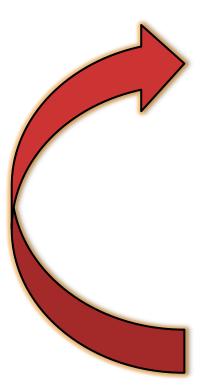
The case of silver-coated ETTs & subglottic secretion drainage

Many VAP studies are under-powered

The case of head of bed elevation


Accuracy of clinical diagnosis of VAP

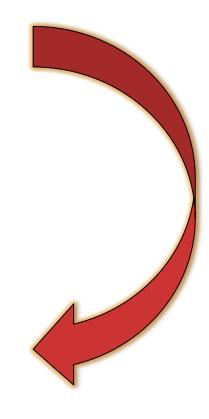
Tejerina et al., J Critical Care 2010;25:62


Accuracy of BAL cultures

Relative to histology

Kirtland, *Chest* 1997;112:445 Fabregas, *Thorax* 1999;54:867 Chastre, *Am Rev Respir Dis* 1984;130:924 Torres, *Am J Resp Crit Care Med* 1994;149:324 Marquette, *Am J Resp Crit Care Med* 1995;151:1878 Papazian, *Am J Resp Crit Care Med* 1995;152:1982

Circularity Between VAP Preventive Practices and the VAP Definition



VAP Definition

Fever Leukocytosis Purulent Secretions Positive cultures

Oral care with CHG Silver Coated ETT Subglottic secretion drainage Semi-recumbent position etc.

positive cultures and/or secretions

This means that even studies with Double Blinding & Objective Diagnostic Criteria are still at risk of bias

Silver-Coated Endotracheal Tubes

CARING FOR THE CRITICALLY ILL PATIENT							
	ndotracheal Tube sociated Pneum domized Trial						
Marin H. Kollef, MD Bekele Afessa, MD Antonio Anzueto, MD	coated endotracheal tube has been design bacterial colonization and biofilm formation						
Christopher Veremakis, MD Kim M. Kerr, MD	the incidence of microbiologically confirm Design, Setting, and Participants Pr	rospective, randomized, single-blind, con-					
Benjamin D. Margolis, MD Donald E. Craven, MD Pamela R. Roberts, MD	trolled study conducted in 54 centers in North America. A total of 9417 adult patients (c=18 years) were screened between 2002 and 2006. A total of 2003 patients ex- pected to require mechanical ventilation for 24 hours or longer were randomized. Intervention Patients were assigned to undergo intubation with 1 of 2 high- volume, low-pressure endotracheal tubes, similar except for a silver coating on the experimental tube. Main Outcome Measures Primary outcome was VAP incidence based on quan- titative bronchalveolar lavage fluid culture with 10° colony-forming units/mL or greater in patients intubated for 24 hours or longer. Other outcomes were VAP incidence in all intubated patients, time to VAP ones, length of intubation and duration of inten-						
Alejandro C. Arroliga, MD Rolf D. Hubmayr, MD Marcos I. Restrepo, MD							
William R. Auger, MD Regina Schinner, Dipl-Stat							
for the NASCENT Investigation Group	confirmed VAP were 4.8% (37/766 path	4 hours or longer, rates of microbiologically ents; 95% confidence interval [CI], 3.4%-					
V International Control Associated with high morbidity, including in- creased length of hospital stay, health care costs, and infection with multidrug-resistant pathogens. ¹³ The condition usually occurs within 10 days after endotracheal intubution. ³⁴ Reported	6.6%) In the group receiving the silver-coated tube and 7.5% (56/743; 95% CI, 5.7%- 9.7%) (P =.03) in the group receiving the uncoated tube (all intubated patients, 3.8% (37/968; 95% CI, 2.7%-5.2%) and 5.8% (56/964; 95% CI, 4.4%-7.5%) (P =.041), with a relative risk reduction of 35.9% (95% CI, 3.6%-69.0%; all intubated patients, 34.2% (95% CI, 1.2%-67.9%)). The silver-coated endotracheal tube was associated with delayed occurrence of VAP (P =.005). No statistically significant between-group differences were observed in durations of intubation, intensive care unit stay, and hos- pital stay, mortality; and frequency and severity of adverse events.						
rates vary by case mix, case definition, di- agnostic procedures, and method of ex- pressing the rate. ³ Conservative estimates	Conclusion Patients receiving a silver-coated endotracheal tube had a statistically significant reduction in the incidence of VAP and delayed time to VAP occurrence com- pared with those receiving a similar, uncoated tube.						
of incidence ranged from 9% ³ to 18% ⁴ in large databases of mechanically ventilated	Trial Registration clinicaltrials.gov iden IAMA. 2008;300(7):805-813	utfier: NCT00148642 www.jama.com					
patients and decreased substantially when the definition was changed from adjudi- cated radiographic, clinical, and bron- choscopic criteria ⁶ to rigorous microbio- logical criteria. ⁶	The etiology of VAP is likely related to colonization of the aerodigestive tract with pathogenic bacteria and to aspira- tion of contaminated screttions. ¹² Pre- vention strategies often focus on modi-	Aufhor Affiliations and Members of the North Ameri- can Shew-Coated Endotracheal Table (MASCENT) in- weltigation Groups an itstod at the end of the article. Corresponding Asthors: Marin H. Koller, MD, Washington University School of Medicine, 660 S Eucld Ave, St Louis, MO 63110 (micklefWim wout) doub.					
For editorial comment see p 842.	fiable risk factors for colonization and	Caring for the Critically III Patient Section Editor: Derek C. Angus, MD, MPH, Contributing Editor, JAMA					

ton7-12 and can successfully reduce (angusdc@upmc.edu).

For editorial comment see p 842.

©2008 American Medical Association. All rights reser

• Randomized controlled trial of 2,003 patients to silver coated vs conventional endotracheal tubes

• VAP defined as present if quantitative BAL fluid culture with >10⁴ colony forming units/mL

36%

fewer VAPs in patients randomized to silver-coated endotracheal tubes

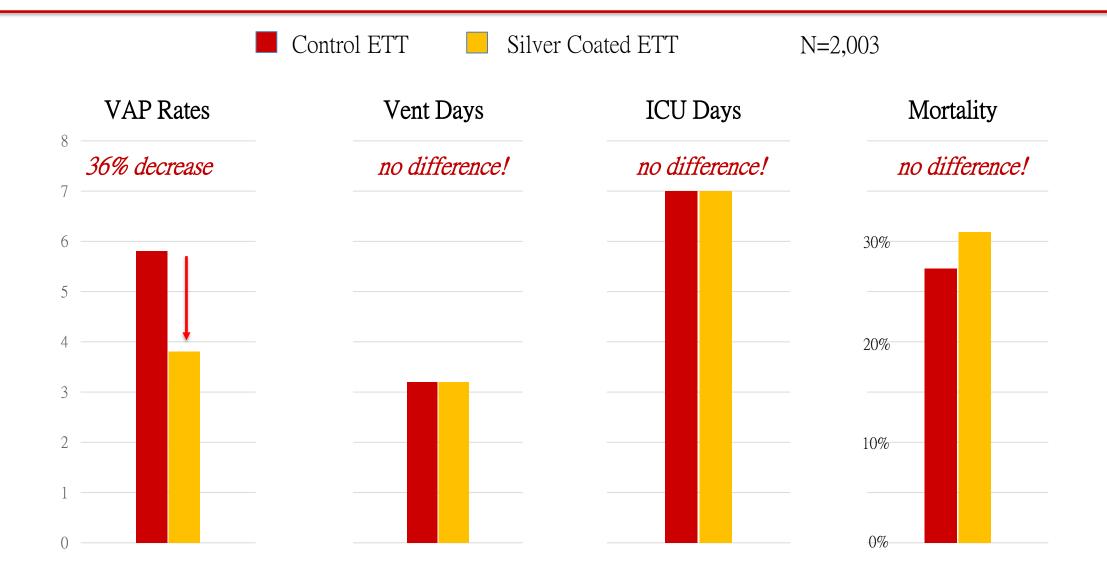
(Reprinted) JAMA, August 20, 2008-Vol 300, No. 7 80

Silver-Coated Endotracheal Tubes

Table 2. Incidence of Microbiologically Confirmed Ventilator-Associated Pneumonia (VAP)^a

	Evaluable Patients With VAP, No./Total (%) [95% CI]				
	Silver-Coated Tube	Uncoated Tube			
Microbiology ^b					
Staphylococcus aureus	9	16			
Methicillin-resistant S aureus	3	7			
Pseudomonas aeruginosa	8	11			
Enterobacteriaceae	10	5			
Yeast	5	7			
Streptococcus species	4	7			
Haemophilus influenzae	3	3			
Acinetobacter baumannii	1	5			
Other ^c	5	17			

VAP Counts Included:
Normal flora
Candida species
Enterococcus, &
Coagulase-Negative Staphylococci


Abbreviations: CI, confidence interval; RR, relative risk.

^a Patients with at least 10⁴ colony-forming units/mL in bronchoalveolar lavage fluid.

^b Twenty patients had polymicrobial infections. In the group receiving the silver-coated endotracheal tube, 6 patients had 2 microorganisms and 1 patient had 3. In the group receiving the uncoated tube, 11 patients had 2 microorganisms and 2 patients had 3.

^c Other microorganisms in the group receiving the silver-coated endotracheal tube were normal flora (n = 4) and Stenotrophomonas maltophilia (n = 1). Other microorganisms in the group receiving the uncoated tube were normal flora (n = 8), S maltophilia (n = 2), Neisseria (n = 2), coagulase-negative staphylococci (n = 3), vancomycin-resistant enterococcus (n = 1), and Burkholderia cepacia (n = 1).

Silver Coated Endotracheal Tubes

JAMA 2008;300:805-813

Subglottic Secretion Drainage

Meta-Analysis of randomized trials: Significantly Lower VAP Rates

	SSD Control		Risk Ratio			Risk Ratio		
Study or Subgroup	Events Total Events Total		Weight	Weight M-H, Random, 95% CI		M-H, Random, 95% Cl		
Mahul 1992	9	70	21	75	3.8%	0.46 [0.23, 0.93]	1992	
Valles 1995	14	95	25	95	5.5%	0.56 [0.31, 1.01]	1995	
Kollef 1999	8	160	15	183	2.8%	0.61 [0.27, 1.40]	1999	
Bo 2000	8	35	15	33	3.7%	0.50 [0.25, 1.03]	2000	-
Smulders 2002	3	75	12	75	1.3%	0.25 [0.07, 0.85]	2002	
Girou 2004	5	8	б	10	3.5%	1.04 [0.50, 2.18]	2004	
Liu 5 2006	3	48	10	50	1.3%	0.31 [0.09, 1.07]	2006	
Liu Q 2006	14	41	30	45	8.5%	0.51 [0.32, 0.82]	2006	
Lorente 2007	11	140	31	140	4.6%	0.35 [0.19, 0.68]	2007	_
Zheng 2008	9	30	16	31	4.6%	0.58 [0.31, 1.11]	2008	
rang 2008	12	48	20	43	5.6%	0.54 [0.30, 0.97]	2008	
Bouza 2008	13	345	19	369	4.0%	0.73 [0.37, 1.46]	2008	
acherade 2010	25	169	42	164	9.6%	0.58 [0.37, 0.90]	2010	
Гао 2014	52	102	34	47	28.3%	0.70 [0.54, 0.91]	2014	-
Damas 2014	15	170	32	182	5.7%	0.50 [0.28, 0.89]	2014	
Koker 2014	5	23	10	28	2.3%	0.61 [0.24, 1.53]	2014	
Gopal 2015	13	120	25	120	5.0%	0.52 [0.28, 0.97]	2015	Risk Ratio
Total (95% CI)		1679		1690	100.0%	0.58 [0.51, 0.67]		(0.51-0.6
Fotal events	219		363					
leterogeneity: Tau ² =	0.00; Ch	$ni^2 = 12$	2.12, df =	= 16 (P	= 0.74);	$ ^2 = 0\%$		0.01 0.1 1 10
Test for overall effect: $Z = 7.71$ (P < 0.00001)								Favors SSD Favors Control

Subglottic Secretion Drainage

Meta-Analysis of randomized trials: <u>No Impact on Ventilator Days or ICU Days</u>

T T	• •		
Vont		tor	
	lla	UI I	Davs

<u>IOI Days</u>	SSD Control		Control Mean Difference					Mean Difference		
Study or Subgroup	Mean [days]	SD [days]	Total	Mean [days]	SD [days]	Total	Weight	IV, Random, 95% CI [days]	Year	IV, Random, 95% CI [days]
Kollef 1999	1.5	3.3	160	1.9	5.1	183	29.1%	-0.40 [-1.30, 0.50]	1999	
Smulders 2002	5.8	4.4	75	7.1	5.4	75	9.5%	-1.30 [-2.88, 0.28]	2002	
Liu 5 2006	15	14	48	15	10	50	1.0%	0.00 [-4.83, 4.83]	2006	
Lorente 2007	10.5	15.91	140	11.1	15.19	140	1.8%	-0.60 [-4.24, 3.04]	2007	
Bouza 2008	2	5.3	345	1.9	3.8	369	50.8%	0.10 [-0.58, 0.78]	2008	+
Lacherade 2010	10.9	10.6	169	10.8	14	164	3.3%	0.10 [-2.57, 2.77]	2010	
Damas 2014	11.71	11.87	170	10.87	9.79	182	4.5%	0.84 [-1.44, 3.12]	2014	
Total (95% CI)			1107			1163	100.0%	-0.16 [-0.64, 0.33]		No difference
Heterogeneity: Tau ² = 0.00; Chi ² = 3.68, df = 6 (P = 0.72); I ² = 0%								-4 -2 0 2 4		
Test for overall effect:	Z = 0.64 (P =	0.52)								Favors SSD Favors Control

ICU Days

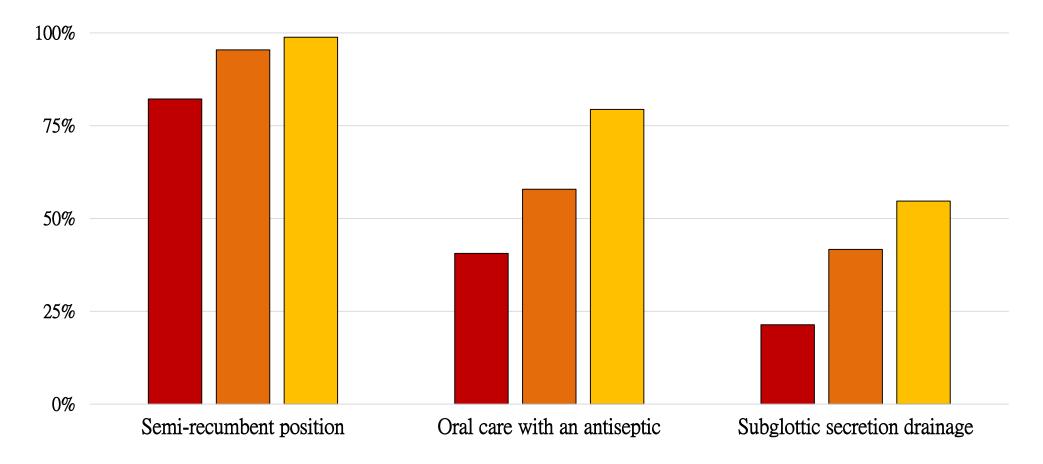
	SSD Control			Mean Difference			Mean Difference				
Study or Subgroup	Mean [days]	SD [days]	Total	Mean [days]	SD [days]	Total	Weight	IV, Random, 95% CI [days]	Year	IV, Random, 95% CI [days]	
Kollef 1999	3.7	4.6	160	3.2	4.5	183	66.3%	0.50 [-0.47, 1.47]	1999		
Lorente 2007	14.1	17.91	140	15.5	19.93	140	3.1%	-1.40 [-5.84, 3.04]	2007		
Bouza 2008	5.6	10.7	345	6.5	14.2	369	18.3%	-0.90 [-2.74, 0.94]	2008		
Lacherade 2010	15.9	14.4	169	15.7	20.4	164	4.3%	0.20 [-3.60, 4.00]	2010		
Damas 2014	16.2	13.52	170	15.76	13.15	182	8.0%	0.44 [-2.35, 3.23]	2014		
Total (95% CI)			984			1038	100.0%	0.17 [-0.62, 0.95]		No o	difference!
Heterogeneity: Tau ² = 0.00; Chi ² = 2.27, df = 4 (P = 0.69); l ² = 0%											
Test for overall effect:	Z = 0.41 (P =	0.68)								Favors SSD Favors Control	

Reasons for the Prevention Paradox

VAP diagnosis is subjective

The case of oral care with chlorhexidine

VAP diagnosis is non-specific The case of silver-coated ETTs & subglottic secretion drainage


Many VAP studies are under-powered

The case of head of bed elevation

Preventive Practices in U.S. Hospitals

Random samples of ~600 U.S. acute care hospitals, 2005-2013

■ 2005 ■ 2009 **□** 2013

Percent of Hospitals

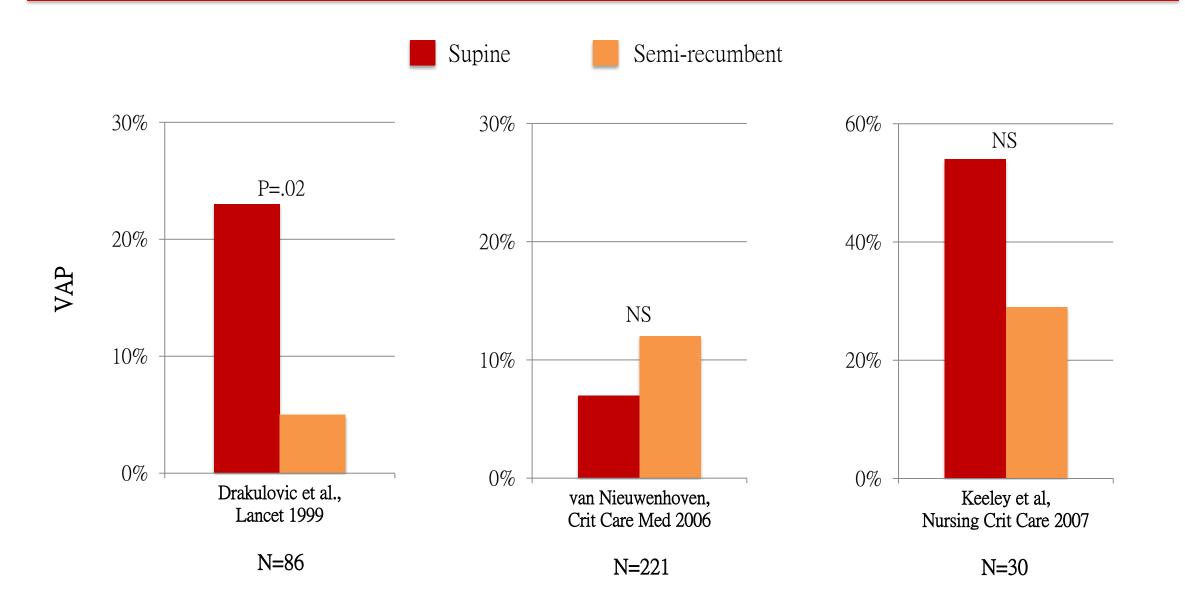
Head of Bed Elevation Studies

Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial

Lancet 1999; 354: 1851-58

Feasibility and effects of the semirecumbent position to prevent ventilator-associated pneumonia: A randomized study* Crit Care Med 2006; 34:396–402

N=221


N=86

Reducing the risk of ventilator-acquired pneumonia through head of bed elevation

Nursing Crit Care 2007;12:287

N=30

Head-of-Bed Elevation and VAP Rates

Semi-recumbent vs Supine Position

Lower VAP Rates

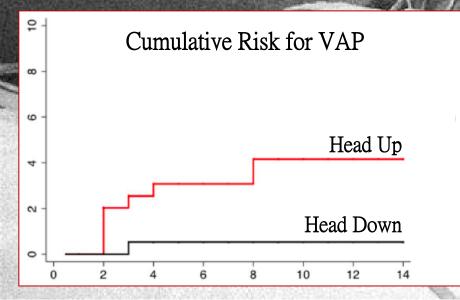
Study or subgroup	semirecumbent position	supine position	Risk Ra M-		Risk Ratio M-
	n/N	n/N	H,Random,9 Cl	25%	H,Random,95% Cl
Cai 2006	4/27	13/27		9.6 %	0.31 [0.11, 0.82]
Drakulovic 1999	3/39	16/47	-	7.4 %	0.23 [0.07, 0.72]
Hang 2012	3/20	9/19		75 %	0.32 [0.10, 1.00]
Hu 2012	8/43	21/43		15.8 %	0.38 [0.19, 0.76]
van Nieuwenhoven 2006	16/112	20/109		18.9 %	0.78 [0.43, 1.42]
Wu 2009	11/56	48/56		21.3 %	0.23 [0.13, 0.39]
Xue 2012	4/48	12/48		85 %	0.33 [0.12, 0.96]
Yu 2012	5/33	14/32		11.0 %	0.35 [0.14, 0.85]
Total (95% CI)	378	381	$\overline{\mathbf{O}}$	100.0 %	0.36 [0.25, 0.50]
Total events 54 (semirecumbent	position), 153 (supine	position)			

64% decrease in VAP risk ratio

Semi-recumbent vs Supine Position

... no difference in mortality or duration of mechanical ventilation

Mortality	semirecumbent position	supine position	Risk Ratio M-	Weight	Risk Ratio	
	n/N	n/N	H,Random,95% Cl		H,Random,95% Cl	
Drakulovic 1999	7/39	13/47		17.7 %	0.65 [0.29, 1.47]	
Hang 2012	5/20	9/19		14.9 %	0.53 [0.22, 1.29]	
van Nieuwenhoven 2006	39/112	38/109	-	67.4 %	1.00 [0.70, 1.43]	
Total (95% CI)	171	175	\bigcirc	100.0 %	0.84 [0.59, 1.20]	


Z	Vent days	semirecumben position	t	supine position		Mean Difference	Weight	Mean Difference
_		N	Mean(SD)	N	Mean(SD)	N,Random,95% Cl		IV,Random,95% CI
_	Drakulovic 1999	39	6.04 (6.21)	47	7.13 (6.96)		24.7 %	-1.09 [-3.88, 1.70]
	Hang 2012	20	6.03 (4.49)	19	10.11 (7.05)		23.0 %	-4.08 [-7.81, -0.35]
	van Nieuwenhoven 2006	112	6 (7)	109	6 (7)		26.1 %	0.0 [-1.85, 1.85]
	Wu 2009	56	4.6 (3.8)	56	12.8 (5.8)	· -	26.2 %	-8.20 [-10.02, -6.38]
	Total (95% CI)	227		231		\bigcirc	100.0 %	-3.35 [-7.80, 1.09]

Maybe Head Down is Better than Head Up?

394 patients randomized to lateral Trendelenburg vs semi-recumbent position

UVIR / EOST

Intensive Care Med 2017;43:1572-1581

Maybe Head Down is Better than Head Up?

394 patients randomized to lateral Trendelenburg vs semi-recumbent position

- VAP
 - 0.5% vs 4.0% (P=.04)
- Antibiotic Utilization
 - No difference

• 28-day mortality

• No difference

• Adverse Events

- 6 in lateral Trendelenburg group vs 0 in semi-recumbent
 - Oxygen desaturation, hemodynamic instability, intracranial hemorrhage, brachial plexus injury

• Trial stopped early

UVIR / EQS7

JOINT COMMISSION IM ON QUALITY AND PATIENT SAFETY

100K Lives Campaign

Using a Bundle Approach to Improve Ventilator Care Processes and Reduce Ventilator-Associated Pneumonia

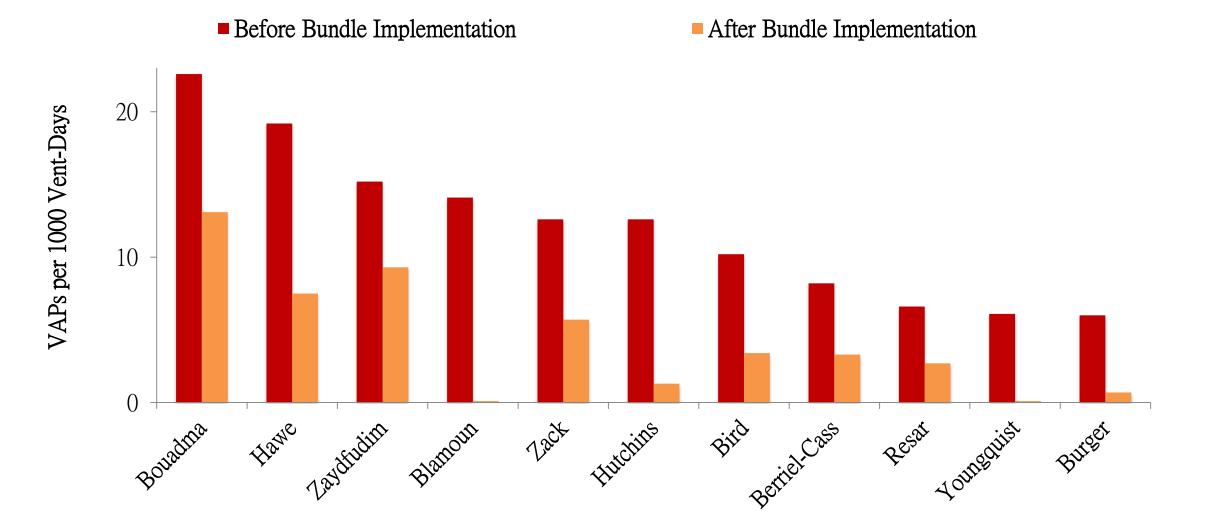
Roger Resar, M.D. Peter Pronovost, M.D., Ph.D. Carol Haraden, Ph.D. Terri Simmonds, R.N. Thomas Rainey, M.D. Thomas Nolan, Ph.D.

The Classic Ventilator Bundle

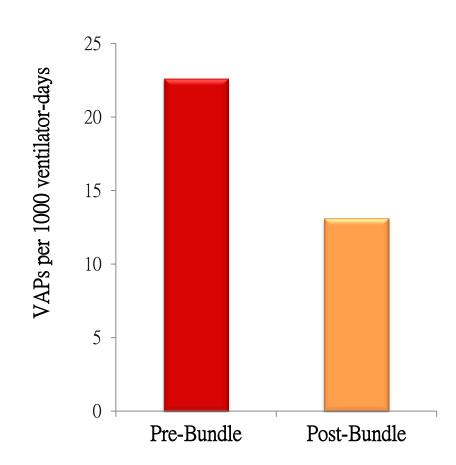
100K lives Campaign SOME IS NOT A NUMBER. SOON IS NOT A TIME.

Elevate the head of the bed

Daily sedative interruptions


Spontaneous breathing trials

Stress ulcer prophylaxis


DVT prophylaxis

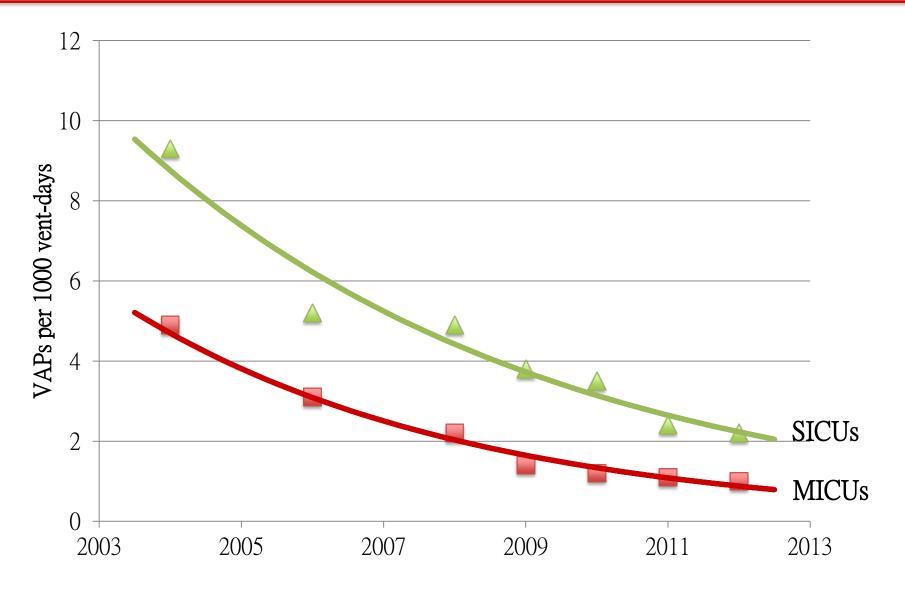
Oral care with chlorhexidine

Bundles Associated with Lower VAP Rates

How do we interpret a drop in VAP rates?

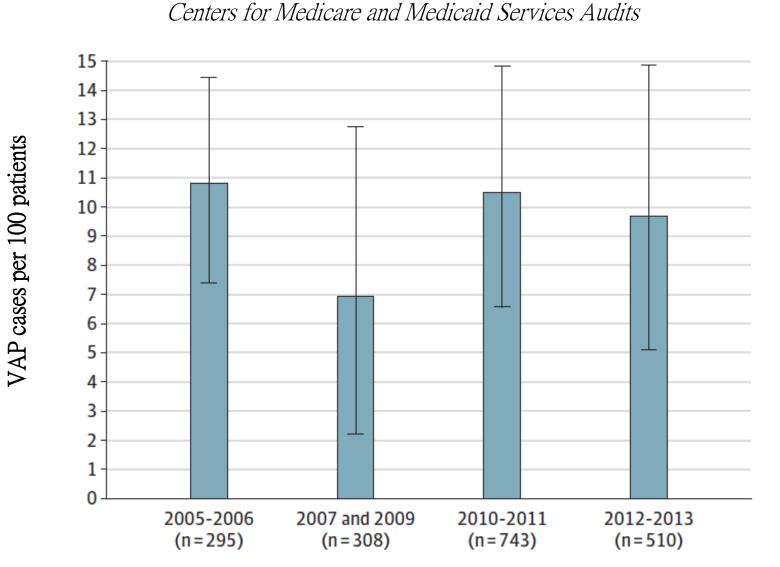
Better Care?

Stricter Surveillance?


Less colonization vs less VAP?

Change in case mix?

Some combination of the above?


U.S. National VAP Rates

Cases Reported to CDC by Hospitals, 2004-2012

Source: CDC NNIS and NHSN

U.S. National VAP Rates, 2005-2013

JAMA 2016;316:2427-2429

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY AUGUST 2014, VOL. 35, NO. 8

"Given the uncertainty surrounding the accuracy and reproducibility of VAP diagnoses … we prioritize VAP interventions that have been shown to improve objective outcomes, such as duration of mechanical ventilation, intensive care or hospital length of stay, mortality, and/or costs in randomized controlled trials."

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY AUGUST 2014, VOL. 35, NO. 8

Basic Practices

Interventions that improve objective outcomes and confer little risk of harm

Interventions that are outcome neutral but cost saving

Special Practices

Interventions that improve objective outcomes but confer some risk of harm

Interventions that decrease VAP rates but insufficient data available on their impact on objective outcomes

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY AUGUST 2014, VOL. 35, NO. 8

Basic Practices

Interventions that improve objective outcomes and confer little risk of harm

Interventions that are outcome neutral but cost saving

Special Practices

Interventions that improve objective outcomes but confer some risk of harm

Interventions that decrease VAP rates but insufficient data available on their impact on objective outcomes

Basic Practices: Improve Objective Outcomes, Little Risk of Harm

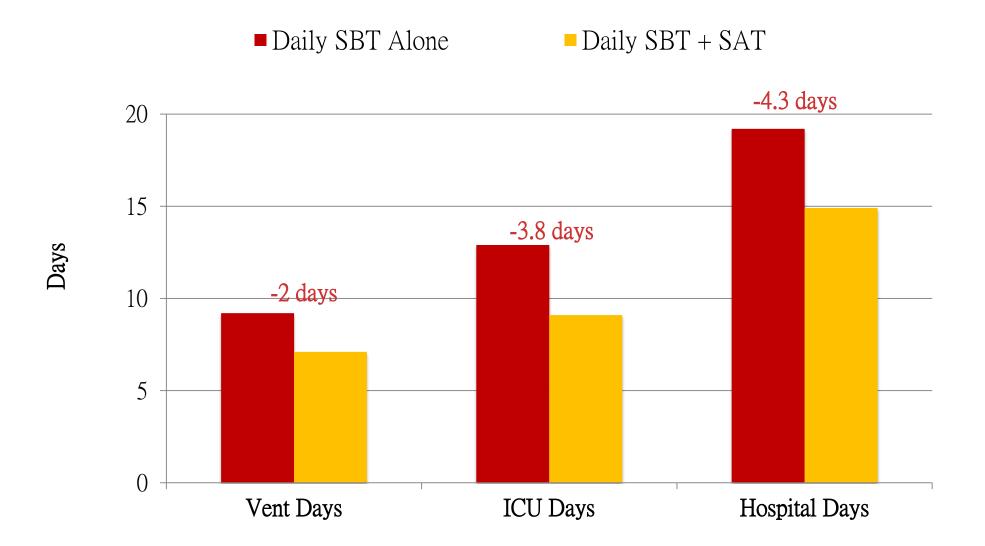
- Use non-invasive positive pressure ventilation in selected populations
- Manage patients without sedation whenever possible
- Interrupt sedation daily
- Assess readiness to extubate daily
- Perform spontaneous breathing trials with sedatives turned off
- Facilitate early mobility

Non-Invasive Positive Pressure Ventilation

Randomized trials of non-invasive ventilation for acute hypercaphic respiratory failure due to COPD exacerbations

Study or subgroup	NIV	Usual care	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Avdeev 1998	3/29	9/29		11.5 %	0.33 [0.10, 1.11]
Barbe 1996	0/14	0/10			Not estimable
Brochard 1995	4/43	12/42		15.6 %	0.33 [0.11, 0.93]
Celikel 1998	0/15	1/15		1.9 %	0.33 [0.01, 7.58]
Collaborative 2005	5/100	8/91		10.7 %	0.57 [0.19, 1.68]
Dikensoy 2002	1/17	2/17		2.6 %	0.50 [0.05, 5.01]
Khilnani 2010	3/20	2/20	 +	2.6 %	1.50 [0.28, 8.04]
Liu 2005	1/18	3/18	_	3.8 %	0.33 [0.04, 2.91]
Matuska 2006	7/30	7/30	+	9.0 %	1.00 [0.40, 2.50]
Plant 2001	12/118	24/118		30.8 %	0.50 [0.26, 0.95]
Samaría 2009	4/20	8/20		10.3 %	0.50 [0.18, 1.40]
Thys 2002	2/10	1/10		1.3 %	2.00 [0.21, 18.69]
Total (95% CI)	434	420	(\bullet)	100.0 %	0.54 [0.38, 0.76]
Total events: 42 (NIV), 77 (Usual care)				
Heterogeneity: Chi ² = 6.36	, df = 10 (P = 0.78);	l ² =0.0%		Relativ	e Risk for Death
Test for overall effect: Z = 3	3.49 (P = 0.00048)				
Test for subgroup difference	es: Not applicable			0.34 (9.	5% CI 0.38-0.76)
			0.01 0.1 1 10 100		
			Lower with NIV Lower with usual of	are	

Lighter Sedation: Lower Mortality, Fewer Vent Days


Mortality

	Light Sed	lation	Deep Sed	ation	Odds Ratio			Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
van den Boogaard 2012	41	1017	37	249	17.2%	0.24 [0.15, 0.38]	2012	
Shehabi 2012	1	80	39	171	4.3%	0.04 [0.01, 0.32]	2012 +	
Shehabi 2013 Australia Pilot	3	21	2	16	4.6%	1.17 [0.17, 7.96]	2013	
Shehabi 2013 Malaysia	4	31	4	29	6.7%	0.93 [0.21, 4.10]	2013	
Shehabi 2013	6	45	76	209	11.7%	0.27 [0.11, 0.67]	2013	
Tanaka 2014	73	209	52	113	17.2%	0.63 [0.39, 1.00]	2014	
Samarin 2014	3	39	2	27	4.8%	1.04 [0.16, 6.69]	2014	
Balzer 2015	131	1371	175	513	19.6%	0.20 [0.16, 0.26]	2015	
Stephens 2017	10	137	47	244	13.9%	0.33 [0.16, 0.68]	2017	
Total (95% CI)		2950		1571	100.0%	0.34 [0.21, 0.54]		Lower Mortality
Total events	272		434					
Heterogeneity: Tau ² = 0.27; Chi ² = 27.87, df = 8 (P = 0.0005); l ² = 71%							0.1 1 10 100	
Test for overall effect: $Z = 4.5$	52 (P < 0.00	001)					0.01	Favours [Light Sedation] Favours [Deep Sedation]

Ventilator Days

	Light Sedation			Deep Sedation			Mean Difference			Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% Cl		
Shehabi 2012	2.7	0.39	80	7.5	0.58	171	11.7%	-4.80 [-4.92, -4.68]	2012			
van den Boogaard 2012	1.9	5.9	1017	7.3	11.7	249	10.5%	-5.40 [-6.90, -3.90]	2012			
Shehabi 2013 Australia Pilot	3.3	2.2	21	3.4	2.3	16	10.5%	-0.10 [-1.57, 1.37]	2013	+		
Shehabi 2013 Malaysia	2.5	0.39	31	3.4	1.3	29	11.5%	-0.90 [-1.39, -0.41]	2013			
Shehabi 2013	4.4	1.5	45	7.3	5.1	209	11.3%	-2.90 [-3.72, -2.08]	2013	~		
Tanaka 2014	5.5	3.1	209	7	3	113	11.4%	-1.50 [-2.19, -0.81]	2014	. v		
Samarin 2014	1.6	2.1	39	2.1	3.4	27	10.6%	-0.50 [-1.94, 0.94]	2014			
Balzer 2015	0.88	0.09	1371	2.3	2.2	513	11.6%	-1.42 [-1.61, -1.23]	2015			
Stephens 2017	4.6	5.3	137	5.6	6.1	244	10. 9 %	-1.00 [-2.17, 0.17]	2017	· •		
Total (95% CI)			2950					-2.07 [-3.60, -0.53]		Fewer Vent Days		
Heterogeneity: $Tau^2 = 5.24$; C			$df = \delta$		-50 -25 0 25 50							
Test for overall effect: $Z = 2.6$	4 (P = 0	.008)								Favours [Light Sedation] Favours [Deep Sedation]		

Paired Sedative Interruptions & Breathing Trials

Lancet 2008;371:126-34

Early mobility

http://69.36.35.38/images/CHESTPhysician/CritCareCom0610Fig2.jpg

- May encourage & facilitate less sedation
- May help prevent delirium
 - These benefits may by synergistic with other ventilator bundle components such as spontaneous awakening and breathing trials.
- Data on outcomes are mixed. Some studies show less time to extubation while others do not.

Thorax 2018;73:213-221 *JAMA* 2016;315:2694-2702 Lancet 2016;388:1377 - 88 *Crit Care Med* 2013;41:717 *Lancet* 2009;373:1874 Arch Phys Med Rehabil 2010;91:536

Early Mobility

Hospital Death

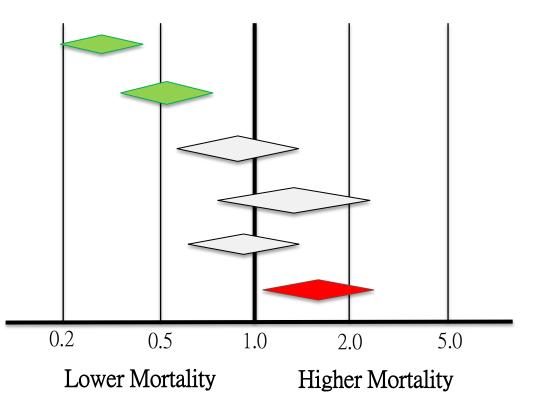
	Rehabilit	ation	Standard	Care		Risk Difference	Risk Difference	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl	
1.1.2 Mortality at hos	pital discha	arge						
Brummel 2014	6	22	6	22	1.4%	0.00 [-0.26, 0.26]		
Denehy 2013	5	74	7	76	13.4%	-0.02 [-0.11, 0.06]		
Dong 2014	2	30	3	30	5.1%	-0.03 [-0.17, 0.11]		
Dong 2016	2	53	3	53	15.4%	-0.02 [-0.10, 0.06]		
Hodgson 2016	2	29	1	21	6.0%	0.02 [-0.11, 0.15]		
Morris 2008	20	165	30	165	16.9%	-0.06 [-0.14, 0.02]		
Morris 2016	18	150	18	150	18.5%	0.00 [-0.07, 0.07]		
Moss 2016	10	59	6	61	6.8%	0.07 [-0.05, 0.19]		
Schaller 2016	17	104	8	96	12.4%	0.08 [-0.01, 0.17]		
Schweickert 2009 Subtotal (95% CI)	9	49 735	14	55 729	4.0% 100.0%	-0.07 [-0.23, 0.09] -0.00 [-0.04, 0.03]		
Total events	91		96					
Heterogeneity: Tau ² =	0.00; Chi ² :	= 8.26, d	if = 9 (P = 0).51); I [≥] =	= 0%			
Test for overall effect:	•			21				

No impact on hospital death rates...

-0.2 -0.1 0 0.1 0.2 Favours rehabilitation Favours standard care

Days Alive and Out of Hospital to 180 days

	Rehabilitation Standard Care				Mean Difference	Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.26.1 Early and low	dose reh	abilita	ation						
Hanekom 2012	160	43	96	151	55	97	32.8%	9.00 [-4.92, 22.92]	
Hodgson 2016	156	27	29	143	27	21	27.6%	13.00 [-2.16, 28.16]	+- -
Wolfe 2013 Subtotal (95% CI)	115	78	48 173	91	83	48 166	6.1% 66.6%	24.00 [-8.22, 56.22] 12.04 [2.27, 21.81]	
Heterogeneity: Tau ² =	0.00; Ch	i² = 0.	73, df=	= 2 (P = 0).69); ľ	²= 0%			
Test for overall effect:	Z= 2.42	(P = 0	.02)						
1.26.2 Late and high	dose reh	abilita	ation						
Moss 2016 Subtotal (95% CI)	151	31	59 59	146	45	61 61	33.4% 33.4%	5.00 [-8.79, 18.79] 5.00 [-8.79, 18.79]	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 0.71	(P = 0	.48)						
Total (95% CI)			232			227	100.0%	9.69 [1.71, 17.66]	(+)
Heterogeneity: Tau ² =	0.00; Ch	i² = 1.	39, df=	= 3 (P = 0).71); ř	² = 0%			
Test for overall effect:									
Test for subgroup diff		•	,	46 - 1 (D	- 0.44	17 - 4	201		Favours standard care Favours rehabilitation

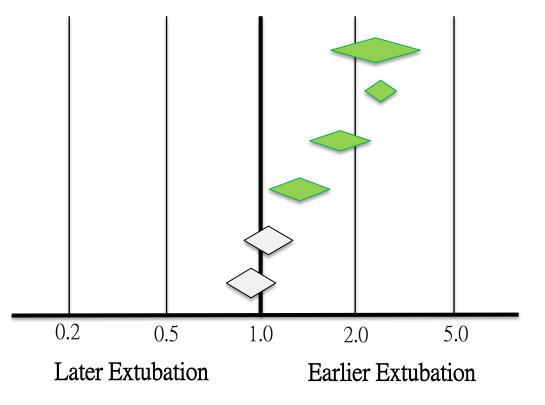

...but more days alive and out of hospital

Ventilator Bundle Compliance and Death

Retrospective analysis of 5,539 patients on mechanical ventilation *adjusted for comorbidities, severity of illness, contraindications, etc.*

Spontaneous breathing trials Spontaneous awakening trials Head of bed elevation Thromboprophylaxis Stress ulcer prophylaxis Oral care with chlorhexidine

Hazard Ratios for Ventilator Death



Ventilator Bundle Compliance and Time to Extubation Alive

Retrospective analysis of 5,539 patients on mechanical ventilation

adjusted for comorbidities, severity of illness, contraindications, etc.

Thromboprophylaxis Spontaneous breathing trials Spontaneous awakening trials Head of bed elevation Stress ulcer prophylaxis Oral care with chlorhexidine Hazard Ratios for Extubation Alive

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY AUGUST 2014, VOL. 35, NO. 8

Basic Practices

Interventions that improve objective outcomes and confer little risk of harm

Interventions that are outcome neutral but cost saving

Special Practices

Interventions that improve objective outcomes but confer some risk of harm

Interventions that decrease VAP rates but insufficient data available on their impact on objective outcomes

Basic Practices: Outcome Neutral but Cost Saving

Change ventilator circuits only when visibly soiled or malfunctioning

Multiple RCTs

No impact on VAP rates

No impact on duration of mechanical ventilation, ICU length of stay, or mortality

BUT ··· cost saving!

Am Rev Respir Dis 1991;143:738 Ann Intern Med 1995;123:168 Infect Control Hosp Epidemiol 1996;17:14 Infect Control Hosp Epidemiol 2004;25:1077

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY AUGUST 2014, VOL. 35, NO. 8

Basic Practices

Interventions that improve objective outcomes and confer little risk of harm

Interventions that are outcome neutral but cost saving

Special Practices

Interventions that improve objective outcomes but confer some risk of harm

Interventions that decrease VAP rates but insufficient data available on their impact on objective outcomes

Special Practice: Better Outcomes but Possible Risks

Selective oral & digestive decontamination

www.ukenglish.org.uk/idiom-of-the-week-elephant-in-the-room

Selective Oral & Digestive Decontamination

Selective Oral Decontamination

Oropharyngeal antibiotic paste applied 4x/day

- Tobramycin
- Colistin
- Amphotericin B

Designed to target *Staph aureus*, aerobic gram negatives, and yeast

Selective Digestive Decontamination

Oropharyngeal paste applied 4x/day

• Same antibiotics as SOD

Plus...

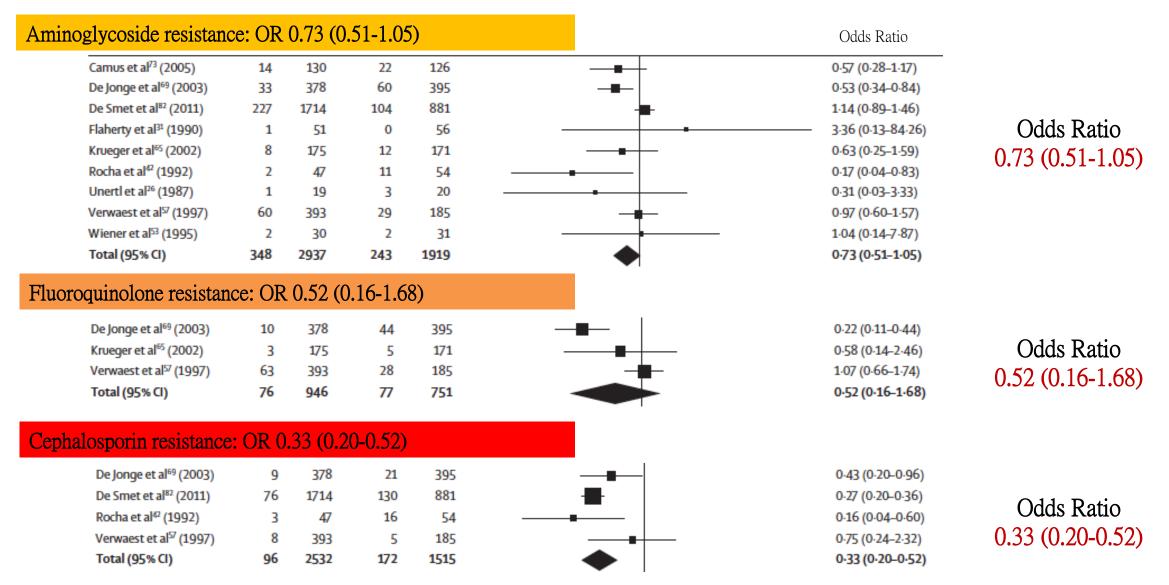
Antibiotic suspension via NG tube

• Same antibiotics as SOD

Plus…

4-day course of intravenous cefotaxime

Selective Oral & Digestive Decontamination


Individual patient level meta-analysis of randomized trials, N=16,528 patients

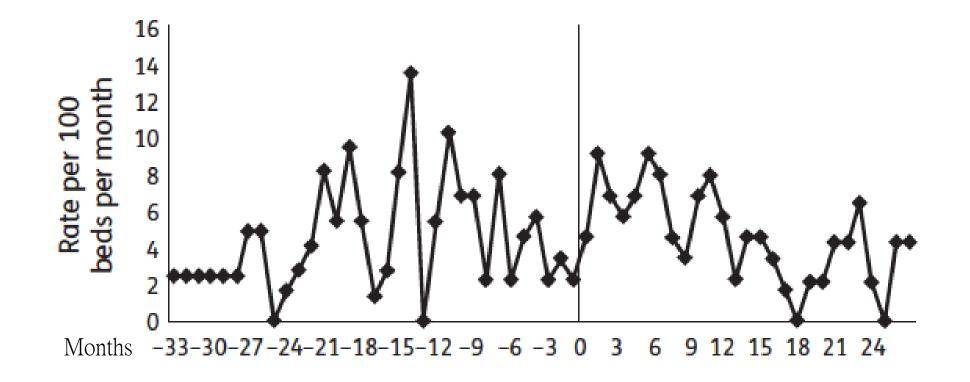
Digestive Decontamination vs Control	aOR (95%-CI)		
Krueger et al. 2002	0.83 (0.57 - 1.20)		-
de Jonge et al. 2003	0.70 (0.53 - 0.94)		Mortality Odds Ratio
de Smet et al. 2009	0.85 (0.73 - 0.98)		0.82 (95% CI 0.72-0.93)
pooled OR (fixed)	0.82 (0.72 - 0.93)	•	
I-statistic (p-value Cochran Q-tes	st) 1.0% (0.52)		N=5,304
Oral Decontamination vs Control	aOR (95%-CI)		
Bergmans et al. 2001	0.82 (0.46 - 1.44)	· · ·	
de Smet et al. 2009	0.84 (0.72 - 0.98)		Mortality Odds Ratio
pooled OR (fixed)	0.84 (0.73 - 0.97)		0.84 (95% CI 0.73-0.97)
I-statistic (p-value Cochran Q-tes	st) 1.0% (0.92)		N=3,921
Digestive vs Oral Decontamination	aOR (95%-CI)		
de Smet et al. 2009	1.01 (0.87 - 1.17)		
Oostdijk et al. 2014	0.85 (0.77 - 0.94)		Mortality Odds Ratio
pooled OR (fixed)	0.90 (0.82 - 0.97)	•	0.90 (95% CI 0.82-0.97)
I-statistic (p-value Cochran Q-tes	st) 72.4% (0.06)		N=12,967
			1
		0.5 1	1.5 2 aOR

Clin Microbiol Infect 2018;24:505-513

Impact on Antibiotic Resistance

Meta-analysis of 9 trials of digestive decontamination that included data on resistance rates

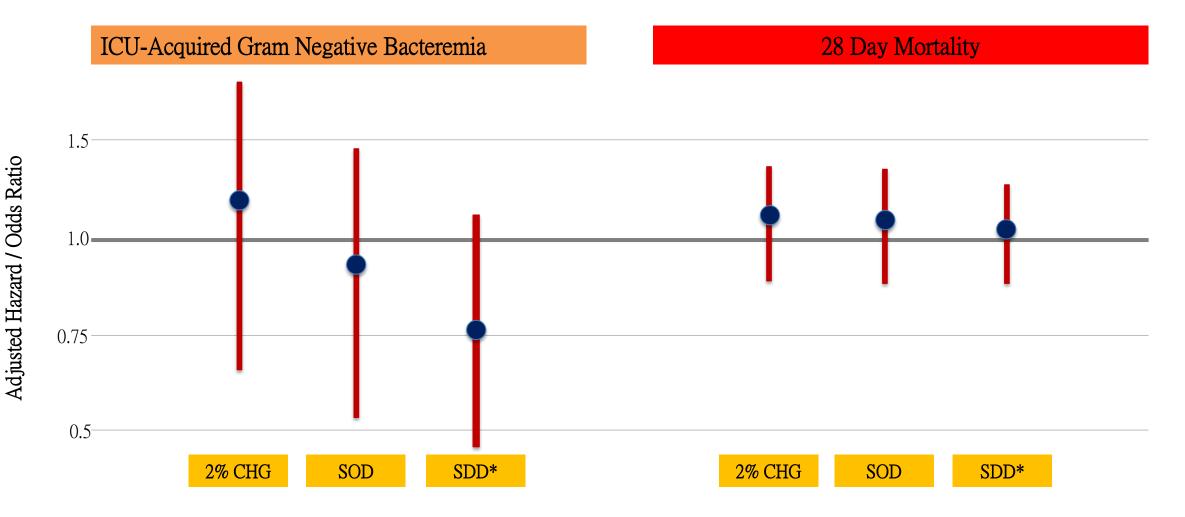
Lancet Infect Dis 2013;13:328


How can it be that giving antibiotics to everyone leads to less resistance???

Fewer infections overall in the digestive decontamination group

Fewer infections = fewer resistant infections Fewer infections leads to less overall antibiotic usage

Is the effect sustained?


Cefotaxime resistance rates in respiratory isolates amongst 8 Dutch ICUs for 24 months following introduction of selective digestive decontamination versus the preceding 33 months

No apparent sustained change in resistance rates over time

Does SDD generalize to high resistance settings?

Cluster randomized trial of usual care vs 2% CHG oral care vs selective oral decontamination vs selective digestive decontamination* in 13 ICUs with high baseline rates of antibiotic utilization and resistant organisms

*SDD included oral antibiotic paste and gastric suspension but no intravenous antibiotics

Strategies to Prevent Ventilator-Associated Pneumonia in Acute Care Hospitals: 2014 Update

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY AUGUST 2014, VOL. 35, NO. 8

Basic Practices

Interventions that improve objective outcomes and confer little risk of harm

Interventions that are outcome neutral but cost saving

Special Practices

Interventions that improve objective outcomes but confer some risk of harm

Interventions that decrease VAP rates but insufficient data available on their impact on objective outcomes • Probiotics

- Automated control of endotracheal tube cuff pressures
- Saline instillation before tracheal suctioning
- Mechanical toothbrushing

Probiotics

Ventilator-associated pneumonia

	Probiot	ics	Contr	Control Risk Ratio		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Banupriya 2015	12	75	35	75	7.8%	0.34 [0.19, 0.61]	
Barraud 2010	23	78	15	71	8.0%	1.40 [0.79, 2.46]	
Forestier 2008	24	102	24	106	9.3%	1.04 [0.63, 1.71]	
Giamarellos-Bourboulis 2009	15	36	16	36	8.6%	0.94 [0.55, 1.60]	
Klarin 2008	1	23	3	21	0.8%	0.30 [0.03, 2.70]	
Knight 2009	12	130	17	129	6.0%	0.70 [0.35, 1.41]	
Li 2012	24	82	37	83	11.2%	0.66 [0.43, 0.99]	
Morrow 2010	17	68	33	70	9.6%	0.53 [0.33, 0.86]	
Oudhuis 2011	10	130	9	124	4.3%	1.06 [0.45, 2.52]	
Rongrungruang 2015	18	72	22	75	8.6%	0.85 [0.50, 1.45]	
Spindler-Vesel 2007	4	26	34	87	3.8%	0.39 [0.15, 1.01]	
Tan 2011	7	16	13	19	6.9%	0.64 [0.34, 1.21]	
Zeng 2016	48	118	62	117	15.1%	0.77 [0.58, 1.01]	
Total (95% CI)		956		1013	100.0%	0.73 [0.60, 0.89]	(•)
Total events	215		320				\checkmark
Heterogeneity: Tau ² = 0.05; Chi ²	= 20.16, 0	df= 12	(P = 0.06)); l≊ = 4	0%		
Test for overall effect: Z = 3.06 (F	e = 0.002)						0.01 0.1 1 10 100 Favours probiotics Favours control
							Favours problotics Favours control

Risk Ratio for VAP 0.73 (95% 0.60-0.89)

Probiotics

Overall Mortality						
_ · · · _ · · · · · · · · · · · · · · ·	Probiotics	s Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events To	otal Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Banupriya 2015	17	70 23	72	13.8%	0.76 [0.45, 1.30]	
Barraud 2010	27	87 24	80	15.2%	1.03 [0.65, 1.64]	+
Giamarellos-Bourboulis 20	09 5	36 10	36	6.1%	0.50 [0.19, 1.32]	
Klarin 2008	5	23 6	21	3.8%	0.76 [0.27, 2.13]	
Knight 2009	35 1	130 42	129	25.6%	0.83 [0.57, 1.21]	
Morrow 2010	12	68 15	70	9.0%	0.82 [0.42, 1.63]	
Rongrungruang 2015	25	75 26	75	15.8%	0.96 [0.62, 1.50]	
Spindler-Vesel 2007	2	26 5	87	1.4%	1.34 [0.28, 6.50]	
Zeng 2016	11 1	103 16	108	9.5%	0.72 [0.35, 1.48]	
						Trend towards
Total (95% CI)	6	618	678	100.0%	0.84 [0.70, 1.02]	
Total events	139	167				<i>lower mortality!</i>
Heterogeneity: Chi ² = 2.92,	df = 8 (P = 0.94); I	I²=0%				
Test for overall effect: Z = 1	.71 (P = 0.09)					Favours probiotics Favours control
						Favours problotics Favours control

Parallel <u>non-significant</u> trends towards fewer ventilator days and shorter ICU length-of-stay

Generally Not Recommended

No impact on VAP and/or objective outcomes

- Oral chlorhexidine
- Stress ulcer prophylaxis
- Tapered endotracheal tubes
- Subglottic secretion drainage
- Silver-coated endotracheal tubes
- Monitoring residual gastric volumes
- Early parenteral nutrition
- Kinetic beds
- Prone positioning

Stress Ulcer Prophylaxis

Randomized controlled trials of ulcer prophylaxis vs placebo in patients getting enteral nutrition

Ventilator-associated pneumonia

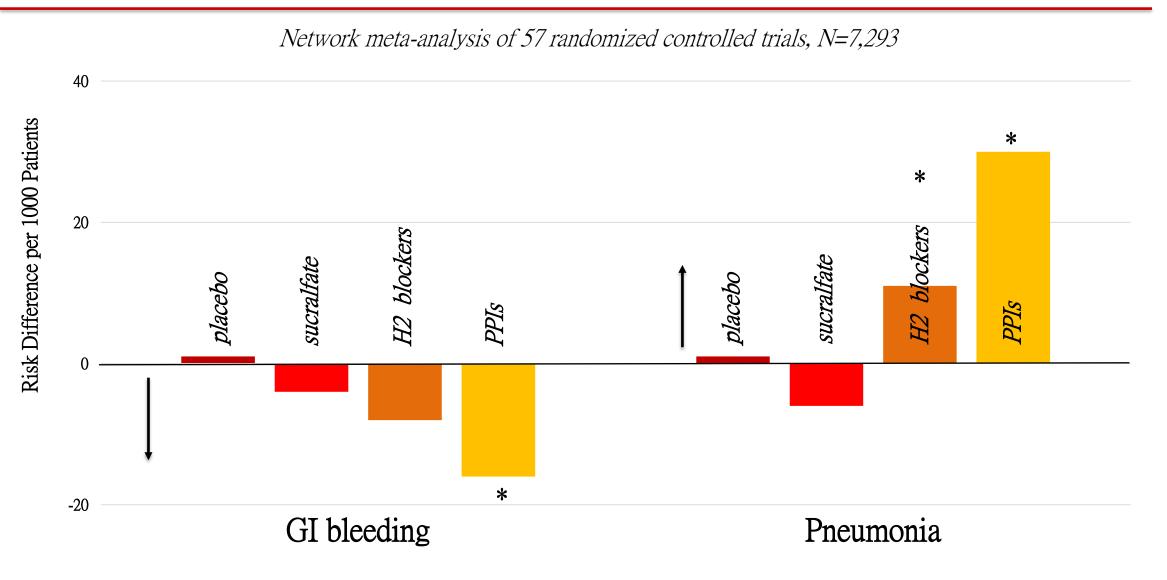
	Antac	id	Place	ebo		Risk Ratio	Risk	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixe	d, 95% CI
Alhazzani 2017	10	49	6	42	18.5%	1.43 [0.57, 3.60]		•
Apte 1992	11	16	7	18	18.8%	1.77 [0.91, 3.44]	-	-
Ben-menachem 1994	25	200	6	100	22.9%	2.08 [0.88, 4.91]	-	
Lin 2016	4	60	6	60	17.2%	0.67 [0.20, 2.24]		
Selvanderan 2016	12	106	8	108	22.7%	1.53 [0.65, 3.59]	_	•
Total (95% CI)		431		328	100.0%	1.53 [1.04, 2.27]	(\bullet
Total events	62		33					
Heterogeneity: Chi ² = 2.	50, df = 4 (P = 0.65	5); I ² = 0%					
Test for overall effect: Z	= 2.14 (P =	0.03)					Less pneumonia with SUP	More pneumonia with SUP

OR 1.53 (95% CI 1.04-2.27) *Higher risk for VAP!*

Critical Care 2018;22:20

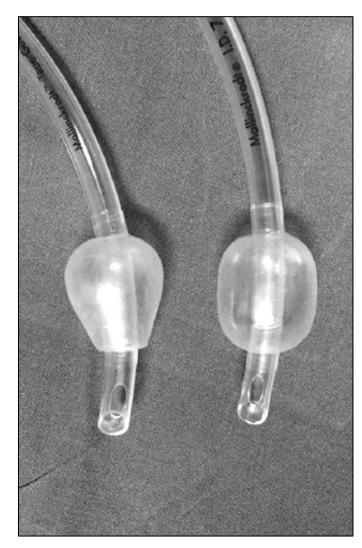
Stress Ulcer Prophylaxis

Randomized trials of stress ulcer prophylaxis vs placebo in patients getting enteral nutrition


Gastrointestinal Bleeding

	Antacio	1	Placeb	С		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% CI
Alhazzani 2017	4	49	3	42	10.3%	1.14 [0.27, 4.82]	
Apte 1992	5	16	6	18	18.0%	0.94 [0.35, 2.49]	
Ben-menachem 1994	10	200	6	100	25.5%	0.83 [0.31, 2.23]	
El-Kersh 2017	1	55	1	47	3.4%	0.85 [0.05, 13.29]	
Lin 2016	0	60	6	60	20.7%	0.08 [0.00, 1.34]	
Selvanderan 2016	3	106	6	108	18.9%	0.51 [0.13, 1.98]	
Van den Berg 1985	5	14	1	14	3.2%	5.00 [0.67, 37.51]	
Total (95% CI)		500		389	100.0%	0.80 [0.49, 1.31]	
Total events	28		29				
Heterogeneity: Chi ² = 6.9	53, df = 6 (F	P = 0.37); I ² = 8%				
Test for overall effect: Z :	= 0.89 (P =	0.37)					Less bleeding More bleeding with SUP with SUP

No clear decrease in bleeding!


Critical Care 2018;22:20

Stress Ulcer Prophylaxis

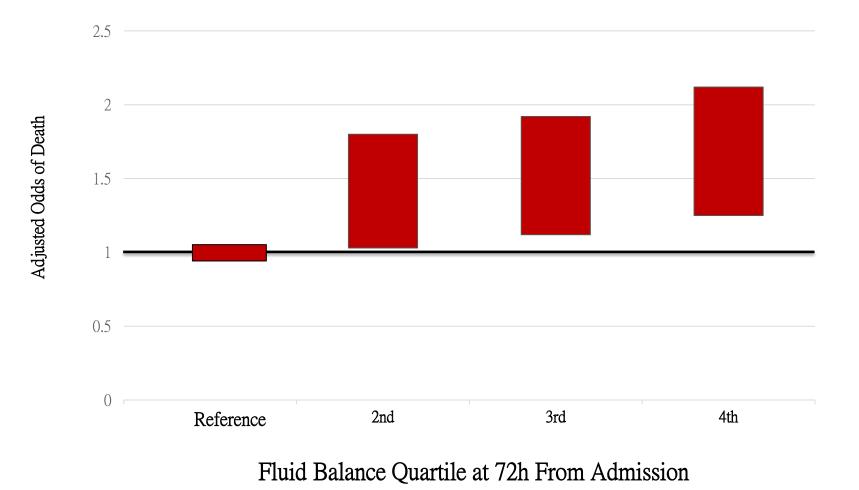
Intensive Care Med 2018;44:1-11

Tapered vs Conical Endotracheal Tube Cuffs

Animal studies suggest that a tapered cuff may better protect against seepage of secretions around the endotracheal tube cuff

	Tapered	cuffs	Standard	cuffs	Odds Ratio			Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Bent et al.	0	37	1	4 3	0.8%	0.38 [0.01, 9.56]	2012 -	
Mahmoodpoor et al.	6	32	7	32	5.4%	0.82 [0.24, 2.79]	2012	
Saito et al.	23	106	23	106	18.9%	1.00 [0.52, 1.92]	2013	_ + _
Philippart et al.	42	282	35	252	34.3%	1.08 [0.67, 1.76]	2015	-
Monsel et al.	15	52	16	57	11.6%	1.04 [0.45, 2.39]	2016	_
Jaillette et al.	33	162	38	163	29.0%	0.84 [0.50, 1.43]	2017	
Total (95% CI)		671		653	100.0%	0.97 [0.73, 1.28]		$\mathbf{\bullet}$
Total events	119		120					Y
Heterogeneity: Tau² = 0.00; Chi² = 0.91, df = 5 (P = 0.97); l² = 0%							H	
Test for overall effect:	Z = 0.25 (P	= 0.81)					0.0	01 0.1 1 10 100 Favours tapered Favours standard

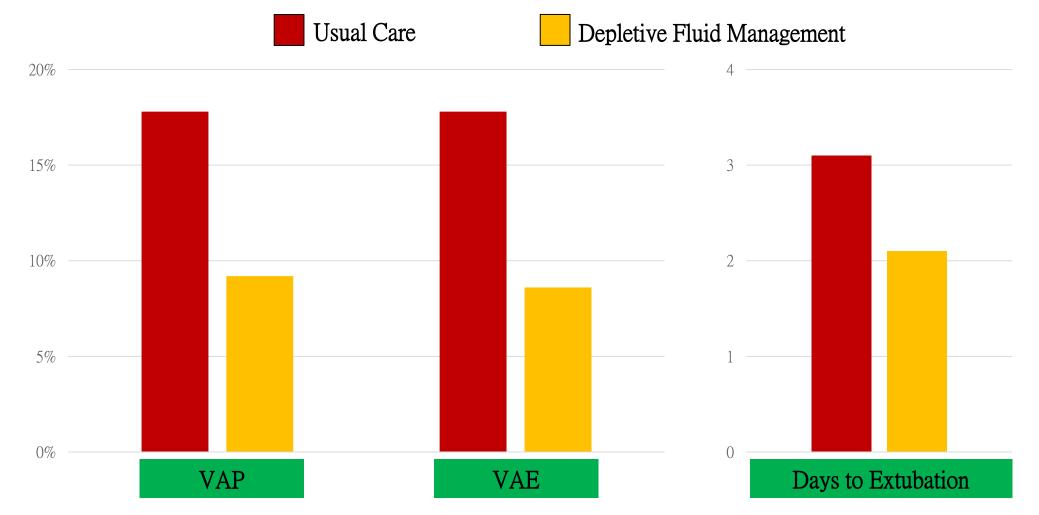
No Impact on VAP Rates !


Crit Care Med 2018;46:316 – 323 *Intensive Care Med* 2017;43:1562-1571

Anesth Pain Med 2017;12:275-280

What's missing?

Cumulative Fluid Balance and Risk of Death


International survey of 1,808 patients with sepsis admitted to an intensive care unit

Crit Care Med 2017:45:386-394

Depletive Fluid Management and VAP

Randomized controlled trial of depletive fluid management during ventilator weaning (smaller volume infusions, more diuresis), N=304

Chest 2014;146:58-65

Summary

- Many interventions proposed to prevent VAP
- Many reported to lower VAP rates but few have been associated with improvements in objective outcomes.
- Possible reasons for the VAP Prevention Paradox
 - VAP diagnosis is subjective (observer bias may favor lower VAP rates)
 - VAP signs are non-specific (interventions may decrease colonization more than infection)
 - Lack of power
- Implication: need to look at objective outcomes for corollary evidence of benefit when evaluating prevention studies

My Recommendations

- Avoid intubation if possible (use non-invasive strategies)
- Elevate the head of the bed
- Provide oral care *without* chlorhexidine
- Minimize sedation
- Paired daily spontaneous awakening and breathing trials
- Early mobility
- Thromboprophylaxis
- Conservative fluid management
- +/- Selective digestive decontamination

Thank You!

mklompas@bwh.harvard.edu