Healthcare Associated Infections -Overview, Surveillance and Prevention

Trish M. Perl, MD, MSc Professor of Medicine JP Sanford Chief of Infectious Diseases UTSW Dallas, TX Trish.Perl@UTSputhwestern.edu

Disclosures: Medimmunne and VA, CDC & BARDA (grant)

Objectives

- Review the burden of HAIs/MDROs Worldwide
- Describe surveillance strategies and challenges
- Review general models for interventions
- Provide a framework for diffusion of ideas

Total Expenditure on Health as a Percent of Gross Domestic Product 2017

Countries that Procure Medical Devices

Lists of medical devices for different types of healthcare facilities or procedures*

The boundaries and names shown and the designations used on this map do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement. Data Source: Baseline country survey on medical devices, 2014 update Map Production: Information Evidence and Research (IER) World Health Organization

http://gamapserver.who.int/mapLibrary/Files/Maps/Global_MedicalDevice Lists_availability.png

What Are Healthcare Associated Infections?

- HAIs are infections in patients receiving treatment for medical or surgical care. Infections can be associated with procedures, the processes and the devices used in medical procedures.
- HAIs occur in all types of care settings, including:
 - Acute care hospitals
 - Ambulatory surgical centers
 - Dialysis facilities
 - Outpatient care (e.g., physicians' offices and health care clinics)
 - Long-term care facilities (e.g., nursing homes and rehabilitation facilities)

Healthcare Associated Infections (HAI)

• Three targets

A HAIs (acute care, long-term care, surgical centers, rehabilitation facilities, home care, ect...)

- Antimicrobial resistant and epidemiologically important organisms
- Emerging infections transmitted in healthcare settings
- US: 1.7 million pts/yr with a HAI
 - 2 10% of hospitalized patients develop healthcare associated infections; the rate varies by size of the hospital
 - Represent a significant portion of adverse events/medical errors
- HAIs= 4th leading cause of death in U.S. behind heart disease, cancer, CVA

The Burden of HAIs

- Systematic review and meta-analysis
- 220 articles included in final analysis
- Prevalence (Overall): 15.5/100 pts (95Cl 12.6-18.9)
- Infection density in adult ICU: 47.9/1000 pt days (95CI 36.7-59.1)
- SSI pooled cum incidence: 5.6/100 procedures
- GNR most common nosocomial isolate
- 54% of *S. aureus* isolates resistant to methicillin

Studies Reporting HAIs in Developing Countries (WHO)

Figure 2: Number of studies reporting health-care-associated infection in developing countries, 1995-2008 Size of dots indicates number of studies. Map created with A RCV iew (version 9.3.1; ESRI, Redlands, CA, USA), using WHO criteria for official borders and disputed borders.

Burden of Healthcare-associated Infections 1995-2008: WHO

http://www.who.int/gpsc/country_work/summary_20100430_en.pdf

Incidence of and Device Related HAI's: High Income Countries 1995-2010

Figure 3.4

Incidence of overall health care-associated infection and device-associated infection in high-risk adult patients in high-income countries, 1995-2010

07 eng.pdf?ua=1

Prevalence of HAI's Low to Middle Income Countries 1995-2010

Prevalence of health care-associated infection in low- and middle-income coutries, 1995-2010

Comparison of HAI Rates

	Number of ICUs	CR-BSI (95% CI)	Catheter-days	CR-UTI (95% CI)	Urinary catheter-day	VAP (95% CI)	Ventilator-days
Developed countries							
NNIS (1995-2003), USA*#	85-1331	5-0‡	1356490	5-3#	1356490	5-8‡	115900
NHSN (2006-2008), USA**	89-182†	2-1‡	699300	3-4‡	546824	2.9‡	383 068
KISS (1997-2003), Germany ¹⁰⁰	309	1-8‡	1993541		-	8-0‡	1177137
KISS (2004-2009), Germany ¹⁰¹	514-583†	1-3‡	4002108	2-0‡	4757133	51‡	2391381
Developing countries							
INICC (2002-2007), 18 developing countries* \$"	60	8-9‡	132061	6-6‡	1030	19-8‡	1802
Argentina (1998–2004; current systematic review) ⁶⁴⁴	15	247 (7-4-42-0)	9458	17-2 (13-4-21-1)	19013	48-0 (42-0-54-0)	5777
Turkey (1999-2005; current systematic review) ^{#(#;8;80}	16	11-0 (2-2-24-3)	23503	10-8 (4-2-17-4)	36343	26-0 (20-0-32-0)	39504
Current systematic review (1995–2008) ^{Induktion Alexandre Alexandre Alexandre}	226	11-3 (9-0-13-6)	373848	9-8 (7-7-11-8)	427 831	22-9 (19-1-26-6)	263027

Data are overall (pooled mean) infection episodes per 1000 device-days. ic us=intensive-care units. CR-BSI-catheter-related biologistream infection. CR-UTI-catheter-related units version infection. VAP-ventilator-associated pneumonia. NNIS-National Nosocomial Infection Surveillance. NHSN-National Healthcare Safety Network. KISS-Krankenhaus Infektions Surveillance System. INICC= International Nosocomial Infection Control Consortium. *M edical or surgical ICUs in major teaching hospitals. †Range reported because number of ICUs included in data pooling varied according to the type of device-associated infection. #95% CI not reported. \$Argentina, Brazil, Colombia, Costa Rica, Cuba, El Salvador, India, Kosovo, Lebanon, Macedonia, Mexico, Morocco, Nigeria, Peru, Philippines, Turkey, Uruguay.

Table 2: Comparison of device-associated infection densities in adult ICUs from developed and developing countries, 1995-2008

To Recapitulate

- 23 developing countries (23/147 [15.6%]) reported a functioning HAI surveillance system in 2010
- No published data on HAI endemic burden from 66% (97/147) of developing countries
- HCAI pooled prevalence in mixed patient populations in low- and middle-income countries: 10.1%. In high-quality papers, prevalence: 15.5%.
- SSI is the most frequent HAI hospital-wide in lowand middle-income countries with a pooled incidence of 11.8/100 pts

Healthcare Associated Infections: HK

- 20,355 patients surveyed, 637 had HAIs and 13 patients had >1 HAI.
- Overall prevalence of HAIs was 3.1% (95% CI: 2.9%-3.4%).
 - pneumonia 0.93% (95% C.I.: 0.80%-1.07%),
 - urinary tract infection 0.57% (95% C.I.: 0.48%-0.69%),
 - SSI: 0.52% (95% C.I.: 0.42%-0.62%), skin & soft tissue infection: 0.36% (95% C.I.: 0.28%-0.45%)
 - BSI: 0.33% (95% C.I.: 0.26%-0.42%).

2010 Prevalence Survey of Infections; Report Hospital Authority of Hong Kong

The World of Antimicrobial Resistance

https://www.cgdev.org/files/1424207_file_CGD_DRWG_FINAL.p

Worldwide Prevalence of MRSA

Grundmann et al. Lancet 2006; 368: 874-85

MDR TB

http://www.who.int/tb/areas-of-work/drug-resistant-tb/globalsituation/en/

CTX β-lactamase Pandemic

Canton et al. Current Opinion Micro 2006;9:466-75

Spread of KPC-containing *Klebsiella* pneumoniae: Global Travel

Table 6 Transmission of KPC-Kp from Greece to other countries

Country	Year	Total Number of patients	Data about Greek origin	Further transmission	probability of the Greek Origin	References	Mechanisms of resistance
Belgium	2009	3	3 patients transferred from Greek hospital	0	Confirmed	Bogaerts et al. 2010 (144)	bla _{KPC-2}
Denmark	06/2009	2	2 patients transferred from Greek hospitals	0	Confirmed	Hammerum et al. 2010 (145)	No data
Finland	06/2009	1	1 patients transferred from Crete	0	Confirmed	Osterblad et al. 2010 (146)	bla _{KPC-2}
France	No data	8	l patient transferred from Chania, Crete	7	Confirmed	Naas et al. 2010 (147)	bla _{KPC-2}
France	10/2007	1	1 patient transferred from Heraklion hospital	0	Confirmed	Cuzon et al. 2008 (137)	bla _{KPC-2}
France	04/2009	1	1 patient transferred from Greek hospital	0	Confirmed	Barbier et al. 2010 (126)	bla _{KPC-2}
France	07/2009	4	1 patient transferred from a Greek hospital	3	Confirmed	Kassis- Chikhani et al. 2010 (148)	bla _{KPC-2}
Germany	2007-2008	9	1 patient treated in Greece	8	Hypo- thetical	Wendt et al. 2010 (149)	bla _{KPC-2}
Hungary	09/2008	7	1 patient transferred from Greek hospital	6	Confirmed	Tóth et al. 2010 (150)	bla _{KPC-2}
Norway	11/2007	6	4 patients transferred from Greek hospital	2	Confirmed	Samuelson et al. 2009 (151)	bla _{KPC-2}
Sweden	No data	1	1 patient transferred from Greek hospital	0	Confirmed	Tegmark Wisell et al. (152)	bla _{KPC-2}
The Netherlands	No data	14	African immigrants travelling via Greece	No data	Hypo- thetical	Messen et al. (153)	No data
The Netherlands	No data	1	1 patient transferred from Greek hospital	No data	Confirmed	Cohen Stuart et al. (154)	bla _{KPC-2}

Wernli D et al. PLoS Medicine 2011

The New Kid on the Block

Mortality Carbapenem Sensitive vs Resistant Klebsiella pneumoniae

Hospital costs from *E. coli* BSIs Increased by ESBL Production

- Economic impact of
 - ESBL production
 - Inadequate initial antimicrobial treatment
- ESBL: longer (7d) and more costly (56.5% to 59.4%个) post-BSI-onset hospital stays
- IIAT: longer (6d) and more costly (45.7% to 48.4%[↑]) post-BSI-onset hospital stays

IIAT: inadequate initial antimicrobial treatment AIAT: adequate initial antimicrobial treatment

Tumbarello M. Antimicrob Agents Chemother. 2010 Oct;54(10):4085-91.

The SENIC Study: Is HAI Surveillance Efficacious?

Infection SSI UTI BSI Pneumonia Medical Surgical

Surveillance is Difficult: Case Finding

- Follow cases as identified systematically—ICD-9 or ICD-10 codes
- Reporting mechanisms
 - Surgeons and OR Staff; ICU personnel
 - ID consults
- Microbiology reports
- Readmissions/Re-operations
- Pharmacy records for ABX use
- Post-discharge surveillance
- Machine learning algorithms

Surveillance Methods

- 100% Chart Review
- Targeted SSI Surveillance: 100% Chart Review for Selected Procedures
- Targeted SSI Surveillance: 100% Chart Review of Patients at High Risk
- Selective Chart Review
- Sampling of patient records and chart review
- Postdischarge Surveillance
- Use of electronic Data Surveillance alone or with "human" surveillance

Challenges

- 100% Chart Review
 - Not practical & feasible in large hospitals
 - Take IP away from educational activities
 - The ICP identified 84% of SSIs noted by the hospital epidemiologist
 - Quality depends on completeness of medical records & on the reviewer's experience

How Do You Define a CLABSI: Traditional vs Computer Surveillance

- 241,518 pt days and 165 963
 CLdays. Median
 IP CLABSI 3.0 (2-4.5) vs Computer
 CLABSI 9 (6.3-11.3)
- Correlation
 between IP and
 computer
 algorithm 0.34

How Do We Find Cases--Can Administrative Data Identify HAI Accurately?

- Cross sectional prospective study--over 9 months 2004--CHOP
- Cases ("true") met NNIS definitions of HAI
- Determined sensitivity/specificity of identifying HAI by use of administrative data or targeted surveillance

	Sens	PPV	NPV
Cases identified by administrative data	61	20	99
Cased identified by			
targeted surveillance	76	100	99

Sherman et al. 2006 ICHE:17 (4); 332

Comparison of Traditional and Computer Surveillance

Figure 4. Relative Ranking of 4 Medical Centers Infection Computer algorithm preventionist 16 mections per 1000 Central Line-Days Central Line-Associated Bloodstream 14 12-10 8 6-4 2-0 C. D В A A D В C Medical Center

Lin et al JAMA 2010:304; 2035

Insights From CAUTI

- Retrospective chart review of 80 records comparing coders
- to MD abstractors
- Coders identified 20 HA UTI (25%) and no CA UTI versus 37 (45%) & 36 CAUTI among MD abstractors; 8 were present on admission

Post-discharge SSI Surveillance

- 501 randomly selected surgeries
- 38% contacted by telephone
- 89% reported no complications
- 1% reported no complications and had documented SSI while in hospital
- 9.5% had symptoms: pus, pain, fever
- 89% of patients with symptoms had seen an MD and no MDs reported an SSI
- Required 15 minutes per patient

SSI Rates Routine vs Enhanced Surveillance

Yokoe. Emerg Infect Dis 2004;10:1924-30.

SSI Detection: Claims Data

LeTourneau etal. ICHE 2013;34:1321-3.

Schnabeldottor. (S. 19.)

"Schnabeldoktor": Protective clothing against pestilence, from the tury. From: Schimmer, Karl Eduard: "Alt und Neu Wien." Vienna and Leipzig, 1904, vol. 2, p. 22.

Does it Matter if We Clean Our Hands?

Mahoney FJ et al Arch Internal Med 1997;157:2601+

Anatomy of

Predisposing Knowle Attitu Beli

> Enabling Skills

Equipment Facilities

CUSP Other methods or frame works of organizational implementation

Positive Deviance

evention of CA-BSI

vention

Reinforcing factors

Feedback Peer/supervisor support Patient participation Link to changes in infection rates

How Does Innovation Disseminate?

- Most innovations diffuse at a disappointingly slow rate
- 1497 Vasco de Gama's voyage around the Cape of Good Hope: 100/160 crew members died of scurvy
- 1601 James Lancaster (English captain): quasiexperimental study of 4 ships to India.
 - Sailors on 1 ship received lemon juice (3 tsp/d); sailors in other 3 ships got nothing
 - "Lemon" ship = all healthy; control ships = 110/278 died

And Then!

- British Navy should adopt citrus juice for scurvy prevention given these findings, correct?
- 1747 James Lind (British Navy physician): confirmed Lancaster's findings from 150 years earlier
- 1795 British Navy adopted this innovation and scurvy eradicated (48 years after Lind's study)
- 1865 (70 years later) this innovation adopted in the British merchant marine
- Does this type of delay (non-diffusion) happen *today*?

QWERTY KEYBOARD

	! 1		@ 2		# 3	6 9 4		% 5	, e	^ 6	8 7	L	*		(9) 0		-	†	-	Delete
Tab		Q		W	E	Ξ.	R		Т	,	Y	U	I	I		С)	Ρ	{ [}	~ - ~
Caps		Ą	L	S		D	F		G		Η		J		к		L.	;				Enter
Shift			Z	-	Х	C	>	V		в	I	Ν	ľ	M	*	· ·	<i>.</i> .	>	?		Sh	ift
Ctrl				AI	t													AI	lt			Ctrl

http://www.computerhope.com

 QWERTY keyboard invented in 1873; intentionally <u>inefficient</u>

Is there a better keyboard?

- Dvorak (1932): a new keyboard based on time-motion studies
- Each finger's work is proportionate to its skill & strength
- National organizations: approved this keyboard as an alternative
- Despite obvious advantages: >90 years w/out much use

The 'Take Off' Point The Majority Engages, Adoption Becomes Irresistible

Building Confidence, Implementing Change

Conclusion

- HAI's and antimicrobial resistance remain significant causes of morbidity and mortality.
- Surveillance is a tool which has helped define the impact of HAIs but now must innovate to help channel resources elsewhere.
- Implementation of simple prevention strategies will generate improved patient safety and visibility at the institution.
- Ultimate patient and healthcare worker safety will require healthcare innovation.
- The components and paradigm in healthcare requires evidence based practices & implementation of social theory change.