

Latest surveillance update

Alex Outhred HK Paediatric Infection Control Workshop 2016

Outline

- Surveillance:
 - Pathogens
 - Bacteria
 - Fungi
 - Viruses
 - Syndromes
 - CLABSI
 - SSI
 - Other indicators with infection control implications

How to allocate infection control resources?

• Greatest prevention of harm

- focus on problems that cause significant harm
- \circ focus on problems that have effective interventions

• Targets

- o bugs
- hand hygiene
- patient environment cleaning etc.
- devices venous and urinary catheters
- HCW competency

• Be aware of biases

- human nature to focus on most interesting or easiest aspects of problem
- cannot eliminate but can try to compensate
- importance of multidisciplinary teams

Levels of surveillance

- Informal or low-level surveillance
 - within a ward or unit
 - internal monitoring within a laboratory
- Institution-based surveillance
 - throughout a hospital or clinic
- Regional or national institutional surveillance
 - hospitals reporting to a central body or authority
- Public health surveillance
 - mandatory reporting of all cases in community and institutions
 - eg. tuberculosis, yellow fever

How to interpret surveillance findings?

- Numerator often easy, denominator harder
 - denominator examples occupied bed days, central line days
- Sometimes a benchmark is published, or other institutions can be used for comparison
- When there is no benchmark or comparator:
 - monitor for a period of time to establish mean, standard deviation (eg. 6-12 months)
 - prepare a Shewhart control chart (very helpful, try it)
 - develop an objective
 - no deterioration from current rate
 - intervene to improve rate

Surveillance of bacteria

- General antimicrobial resistance trends
- Organisms with clinical and infection control significance
 - MRSA and MSSA
 - Clostridium difficile
 - ESBL
 - CRE
 - VRE
 - MRAB
 - Mycobacterium tuberculosis
- Bacterial infections with clinical and infection control significance
 - healthcare-associated *Staphylococcus aureus* bacteraemia
 - central line-associated bloodstream infections (CLABSIs)
 - surgical site infections
 - early-onset neonatal sepsis
 - certain cystic fibrosis pathogens

Bacteria: antimicrobial resistance

• Laboratory-based surveillance:

- perform susceptibility testing on clinically relevant isolates
- monitor rates of antimicrobial resistance
- analyse trends in antimicrobial resistance over time
- eg. form hospital antibiogram committee with antimicrobial stewardship team and microbiologists, annual meeting to review major pathogens and resistant organisms
 - ensure empirical antimicrobial guidelines are appropriate
 - (for example, increasing rates of community ESBLs are a big problem here)
- Collaboration with research or public health labs
 - perform susceptibility testing for public health rather than clinical reasons
 - esp. for conditions with syndromic management, eg. STIs
 - perform typing of isolates to better understand reasons for changing susceptibility patterns

Bacteria: MRSA

• Distinguish between community and healthcare strains

- \circ \quad antimicrobial resistance less reliable than in the past
 - more healthcare strains with oligo-resistance
 - more community strains with multi-resistance
- rates of methicillin resistance in community-onset skin, bone and joint infections
- rates of methicillin resistance in isolates likely to have been acquired in hospital
 - (flawed measure, sometimes community strains predominate here too)
- gold standard type MRSA strains to classify more accurately
 - can type representative sample of strains to conserve resources
- Staff training in specimen collection
- Use chromogenic agar or PCR
 - in general, chromogenic agar is the best option, unless early PCR result can be delivered and lead to significant change in patient or bed management

Bacteria: Staphylococcus aureus

• S. aureus - MSSA may not attract as much attention as MRSA, but...

- infection outcomes are very similar between MSSA and MRSA
- o depending upon setting, rates of MSSA infection can be much higher
- 30-50% of population are colonised with *S. aureus*
 - mixture of transient colonisation and long-term colonisation with "favoured strain"
 - "favoured strains" tend to outcompete new/invading strains at site of colonisation
 - also less likely to cause host infection than new/invading strains
- remember "how to allocate infection control resources"!

• Potential surveillance indicators

- rates of *S. aureus* bloodstream infection
 - community vs. healthcare-associated
- rates of surgical site infection

Bacteria: Clostridium difficile

• Less of a problem in children than adults, but in certain groups:

- o older children, teenagers develop disease indistinguishable from adults
- oncology patients
- transplant patients
- cystic fibrosis patients
- Diagnosis must be a combination of clinical and laboratory findings
 - evidence of toxigenic C. difficile in a patient with new or recurrent diarrhoea
- Typing is a mixed bag
 - useful to have big-picture view of predominant strains
 - different strains seem to have distinct clinical presentations and transmission rates
 - but WGS studies have shown that within a hospital, so many *C. difficile* introductions that trying to track from patient to patient is largely redundant
 - occasional small clusters associated with infection control failures
 - most cases are new introductions, only preventable with antimicrobial stewardship

Bacteria: extended-spectrum β-lactamase producers (ESBL)

- Community and healthcare-associated
- Community surveillance
 - rates of ESBL in community UTI
- Healthcare-associated surveillance
 - \circ rates of ESBL in healthcare-associated BSI, CAUTI
 - screening
 - in Australia, many institutions remain uncertain of the value of routine ESBL screening
 - community rates are similar to healthcare-associated rates
 - in other words, may not be preventable
 - reserve for clusters and high-risk settings (BMT, NICU?)
- Routine testing protocols cover most circumstances
 - use stool sample on chromogenic agar for screening
- In Australia, rising rates of ESBL in community-associated *E. coli* infections are a major concern
 - includes early and late neonatal *E. coli* infections
 - change empirical guidelines to amikacin instead of gentamicin? carbapenems?!

Bacteria: carbapenem-resistant *Enterobacteriaceae* (CRE)

- Similar to ESBL but worse
 - except that at least in Australia, community CRE remain rare
 - resembles hospital ESBL problem of a decade ago before ESBLs moved into community
 - may have very few unsatisfactory treatment options
 - colistin, tigecycline, fosfomycin all problematic
- Healthcare-associated surveillance
 - rates of CRE in healthcare-associated BSI, CAUTI
 - screening
 - for pragmatic reasons (resource allocation) often reserved for contacts of clinical case and high-risk settings (BMT, NICU?)
- Routine testing protocols cover most circumstances
 - use chromogenic agar (ESBL) for CRE screening
 - stool sample
 - problems with delayed collection of stool
 - problems if you accept "rectal" swabs instead (sent to lab with no faecal material)

Bacteria: glycopeptide-resistant Enterococci (VRE)

- Major problem in adult haemodialysis and BMT units
 - transmission but also clinical disease, difficult to treat
- Doesn't seem to cause much clinical disease in children
 - o correct me if I'm wrong, but although we have VRE we see very little disease
- Our experience
 - \circ transmission in oncology unit
 - transmission in NICU
 - so far little in solid organ transplant, dialysis or CF patients, but I'm expecting it one day soon
- Healthcare-associated surveillance
 - o rates of VRE in healthcare-associated *Enterococcus* bacteraemia, CAUTI
 - screening
 - reserved for clusters and high-risk settings (eg. NICU, oncology for us)
- Lab aspects
 - routine protocols will find clinical cases
 - screen with stool sample and chromogenic agar (we also find VRE on our *Campylobacter* media)

Bacteria (and fungi): central line-associated bloodstream infection (CLABSI)

- Preventable, healthcare-associated infections leading to significant morbidity and mortality
 - high priority for surveillance
- Need denominator: line-days
 - \circ troublesome to collect but worth the effort
- Numerator captures all significant central-line associated bacteraemia episodes
 - need formal guidelines and trained classifiers
 - typically single cultures of environmental or low-virulence commensal flora are not counted
- Clear target from literature: less than 1 CLABSI per 1000 line-days
 - \circ lower is better of course
 - to lower institution-wide rates, target units with higher rates
- Achieve lower rates with central line management "bundle"
 - array of quality improvement measures: patient selection, line selection, line insertion, line access, line removal, training/certification for all personnel involved, auditing, surveillance

Bacteria: surgical site infections

- Start with common types of surgery
- Try to monitor elective and emergency procedures
 - appendices, sternotomies, spinal rods?
- Try to capture late infections (diagnosed after discharge) not easy

Bacteria: early-onset neonatal infections

- Some infections clearly preventable
 - Streptococcus agalactiae (GBS), S. pyogenes, Listeria monocytogenes
 - o detect trends over time, measure effectiveness of maternal/perinatal interventions
- Other infections harder to prevent
 - Escherichia coli
 - monitor antimicrobial resistance, ensure empirical therapy remains appropriate

Bacteria: cystic fibrosis

- Some pathogens detected with routine lab
 - MRSA
 - multi-resistant *Pseudomonas aeruginosa*
- Some pathogens may require screening programme
 - Burkholderia cenocepacia
 - Mycobacterium abscessus
 - eg. screen every 6 months in patients over 10 years
- Early detection may help reduce cross infection
- Valuable to monitor rates over time so that increased transmission will be noticed
 - eg. incidence of *M. abscessus* infection per 100 CF patient-years (strictly speaking should be age adjusted, but start with basics)

Bacteria: tuberculosis

- Cases generally notifiable to public health authorities
 - triggers screening of contacts
 - find latent infection via cell-mediated immune response (Mantoux, IGRA)
 - chest X-ray
 - culture (eg. induced sputum)
- Every hospital diagnosis should be assessed for adequacy of isolation
 - risk of transmission to other patients
 - risk of transmission to staff members
- HCW performing chest physiotherapy have high risk of exposure

Bacteria: sexually transmitted infections

- Transmissible pathogens with antimicrobial resistance
 - worthy targets for surveillance programmes
 - eg. Neisseria gonorrhoeae
- Generally low rates in paediatric settings

Bacteria: environment

• Environmental surfaces

- avoided by most clinical microbiology labs
- can be hard to interpret
- o often easier to clean it again than to sample surfaces and wait for culture results
- ATP bioluminescence detection holds some promise as rapid test of thoroughness of cleaning

• Sampling water for Legionella

- likely to be flowing into your water supply from upstream
- likes warm water
 - thermostatic mixing valves
 - cooling towers
- need schedule of testing, protocol to respond to elevated CFU/L of Legionella
- focus on high-risk areas first

Surveillance of fungi

• Patient or environmental survellance not commonly performed, except:

- during construction
- during maintenance of HVAC systems
- during commissioning of oncology units, operating theatres etc.
- investigating clusters
 - (eg. increased rates, or previously rare type of fungus)
- Environmental sampling for fungi should generally be performed by experienced labs
 - most clinical labs do not yet have this experience, or equipment such as air samplers
- Some units have seen acquired antifungal resistance (in Candida albicans or Aspergillus fumigatus)
 - first occurence must be confirmed using sequencing
 - monitoring antifungal resistance rates in these fungi over time becomes essential
- Transmission of *Pneumocystis* can occur
 - rates of confirmed *Pneumocystis* infection should be monitored over time
 - clusters need to be investigated

Surveillance of viruses

- Influenza
- Respiratory syncytial virus
- Rotavirus
- Norovirus
- Other vaccine-preventable viruses

Viruses: influenza

- Major pathogen affecting all ages
- Vaccine preventable
- Severe illness associated with:
 - o immunocompromise
 - chronic lung disease
 - obesity
- Healthcare-associated infection can be significant
- Procedure:
 - collect nasopharyngeal aspirates or nasopharyngeal swabs
 - perform influenza testing (antigen test, PCR more sensitive)
 - classify all influenza cases as community-onset or healthcare-associated
 - monitor healthcare-associated influenza over time

Viruses: respiratory syncytial virus (RSV)

- Major pathogen in neonates, infants
- Severe illness associated with:
 - prematurity
 - immunocompromise
 - chronic lung disease
 - congenital heart disease
 - neuromuscular dysfunction
- Healthcare-associated infection is a significant problem
- Procedure:
 - collect nasopharyngeal aspirates from symptomatic patients
 - perform RSV testing (antigen test, PCR is more sensitive)
 - classify all RSV cases as community-onset or healthcare-associated
 - monitor healthcare-associated RSV infections over time
 - pattern will be seasonal, so long-term data is helpful
- Sequence typing is possible and likely to be informative
 - (so far I have not pursued this)

Viruses: rotavirus

- Major pathogen in neonates, infants
- Vaccine preventable
- Healthcare-associated infection is a significant problem
- Procedure:
 - inpatients with diarrhoea should have stool specimens collected
 - in addition to other pathogens (eg. *C. difficile*), rotavirus should be considered
 - testing should be performed using antigen tests (less sensitive) or PCR (more sensitive)
 - o classify all rotavirus cases as community-onset or healthcare-associated
 - monitor healthcare-associated rotavirus infections over time

Viruses: norovirus

- Pathogen in children of all ages
- Healthcare-associated infection is a major problem
 - healthcare workers may also acquire the infection, can lead to unit closure
 (HCW may also develop sympathetic disease that cannot be confirmed by lab testing)
- Procedure:
 - inpatients with vomiting and diarrhoea should have stool specimens collected
 - in addition to other pathogens, norovirus should be considered
 - testing should be performed using antigen test or PCR (more sensitive)
 - classify norovirus cases as community-onset or healthcare-associated
 - monitor trends in healthcare-associated norovirus infection over time

Viruses: other vaccine-preventable

• Measles

- probably the most transmissible pathogen that infects humans
 - true aerosol transmission
 - basic reproductive rate in non-immune is ~20
 - eg. transmission by passing through same airspace ~1 hour after source patient
- perform infection control assessment of every case of measles linked to the hospital
- Varicella zoster virus
 - perform infection control assessment of every case of varicella or zoster in the hospital
 - both varicella and zoster have potential for airborne transmission
 - (not as infectious as measles, but higher than most respiratory viruses)
- take action to prevent, or reduce severity of, disease in contacts
 - check vaccination history
 - catch-up immunisation
 - measles or varicella zoster immune globulin
- transmission occurring in a healthcare environment is a sentinel event,
 - definitely worth monitoring

Other aspects: hand hygiene

- Essential infection control activity throughout hospital
- Personal responsibility of all staff members
- Adopt a hand hygiene framework
 - eg. WHO "Five Moments"
- (Educate staff, ensure access to washbasins, soap, alcohol-based handrub)
- Audit compliance with the hand hygiene framework
 - by moment
 - by category of employment (eg. nursing, medical, allied health)
 - by location or unit in hospital
- Monitor hand hygiene compliance rates over time
- Consider public display of compliance rates by unit
 - for patients, families and visitors to see
- Participate in regional / national reporting frameworks

Other aspects: sterilisation and high-level disinfection

- For a microbiologist, sterilisation is always preferable to high-level disinfection
 - so many headaches with high-level disinfection!
- Sterilisation
 - process indicators
 - chemical indicators
 - biological indicators (eg. *Geobacillus stearothermophilus*)
- High-level disinfection
 - Two philosophies
 - contaminate with a test organism and verify disinfection
 - which test organism?
 - quarantine device until results??
 - culture rinse water for microbes
 - how often?
 - how many patients at risk by the time results come back??
 - Recent outbreaks of CRE infection linked to (inadequate) high-level disinfection of duodenoscopes/ERCP in USA and Germany

Other aspects: antimicrobial stewardship

- Essential activity throughout hospital
- Help prevent antimicrobial resistance
- Help ensure appropriate and effective use of antimicrobials
- Potential surveillance indicators/tools:
 - measure total antimicrobial exposure
 - defined daily dose (difficult in paediatrics)
 - one alternative is days of therapy
 - categorise agents into high and low risk eg. red drugs, orange drugs, green drugs
 - audit tools such as "5x5" -
 - sample at least 5 patients per week
 - is there a documented indication for antimicrobials?
 - is the antimicrobial regimen concordant with guidelines?
 - if non-concordant with guidelines, is there a documented reason for non-concordance?

Other aspects: healthcare worker immunity

- Healthcare workers exposed to vaccine-preventable diseases at work
- Threat to HCW, and indirect threat to patients if there is further transmission
- Two potential approaches:
 - mandatory compliance all HCW are assessed, and if they do not comply with vaccination policy, they are not permitted to work
 - encouragement all HCW are provided information and access to vaccination
- Indicators:
 - no need for indicators if universal enforced mandatory compliance?
 - otherwise, monitor proportion of staff members with either documented dose of vaccine, or documented antibodies

Other aspects: healthcare worker TB status

• Healthcare workers can transmit tuberculosis to their patients

- Risk assessment of healthcare workers is important for patient safety
- Assess cumulative time spent in high-incidence countries
 - every time this ticks over, HCW should be referred for reassessment
- Assess previous known exposures to tuberculosis
- Assess BCG status
- HCW who fall into higher exposure category should be formally assessed
 - one or more of Mantoux, interferon gamma release assay, chest X-ray
- Compliance may be poor unless programme is mandatory
 - risk to patients is real and significant eg. in NICU
- Monitor:
 - proportion of HCW compliant with risk assessment
 - proportion of HCW referred for formal TB assessment (Mantoux/IGRA/CXR)

Other aspects: healthcare worker exposures

- Healthcare worker exposures are sentinel events
 - examples:
 - needlestick injuries
 - HCW TB exposure
 - acquisition of latent or active tuberculosis
 - monitor number of events, number of staff members exposed
 - risk level of each event (risk of harm to staff member)
 - whether appropriate follow-up was completed
 - (other aspects not directly related to infection control leave, compensation, insurance)

Summary

- Surveillance:
 - Pathogens
 - Bacteria
 - Fungi
 - Viruses
 - Syndromes
 - CLABSI
 - SSI
 - Other indicators with infection control implications
- Numerous potential targets of surveillance
 - always go back to "resource allocation" concept, prioritise accordingly
 - can try negotiating for additional funding to address particular issues if resources insufficient