Issues in the Detection of Multi-Drug Resistant Gram Negative Organisms

Suzanne F. Bradley, M.D.
Professor of Internal Medicine
Division of Infectious Disease
University of Michigan Medical School
VA Ann Arbor Healthcare System
Program Director, Infection Control
Overview

• Problem MDRO GNB in LTCF
• Prevalence in LTCF
• When to screen
• Who should be screened?
• How screening should be done?
• How to detect MDRO GNB
Antibiotic Resistance in LTCF
ESKAPE Pathogens

- *Enterococcus faecium* (VRE)
- *Staphylococcus aureus* (MRSA, VRSA)
- *Klebsiella pneumoniae* (CRE-KPC)
- *Acinetobacter baumannii* (CRAB-MBL)
- *Pseudomonas aeruginosa* (CRE-MBL)
- *Enterobacter* spp. (CRE-KPC)

Antibiotic Resistance - GNB

β-lactamases

<table>
<thead>
<tr>
<th>β-lactamases</th>
<th>Antibiotic Resistance</th>
<th>Enzymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broad spectrum</td>
<td>PCN, AMP early cephalosporins</td>
<td>TEM-1, TEM-2, SHV</td>
</tr>
<tr>
<td></td>
<td>As above & Staph PCNs</td>
<td>OXA</td>
</tr>
<tr>
<td>Extended spectrum (ESBL)</td>
<td>PCN, AMP, Staph PCNs & 3<sup>rd</sup> cephalosporins + monobactams</td>
<td>TEM</td>
</tr>
<tr>
<td>Hospitals 1980s</td>
<td>As above + cefepime [CTX-M]</td>
<td>CTX-M</td>
</tr>
<tr>
<td>Community E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inducible (AmpC)</td>
<td>cephapmics (cefoxitin) β-lactamase inhibitors</td>
<td></td>
</tr>
</tbody>
</table>

Antibiotic Resistance GNB Carbapenemases

<table>
<thead>
<tr>
<th>Carbapenemases</th>
<th>Antibiotic Resistance</th>
<th>Enzymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. pneumoniae (KPC)</td>
<td>all β-lactams</td>
<td>KPC 1</td>
</tr>
<tr>
<td>Detected 1996</td>
<td>all carbapenems</td>
<td>KPC 2</td>
</tr>
<tr>
<td>Outbreaks 2001</td>
<td>some aminoglycosides</td>
<td>KPC 3</td>
</tr>
<tr>
<td>Endemic 4 continents</td>
<td></td>
<td>KPC 4</td>
</tr>
<tr>
<td>Found K. pneumoniae first</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Now E. coli, Enterobacter, Salmonella, Citrobacter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallo-β-lactamases (MBL)</td>
<td>As above</td>
<td>IMP VIM SPM-1</td>
</tr>
<tr>
<td>Detected 1991</td>
<td></td>
<td>GIM-1 NDM-1</td>
</tr>
<tr>
<td>Outbreaks 2000 worldwide</td>
<td></td>
<td>OXA</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Community MDR-GNB ESBLs

<table>
<thead>
<tr>
<th>Community onset</th>
<th>Hospital onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organism</td>
<td>Klebsiella spp (and others)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td></td>
</tr>
<tr>
<td>Type of ESBL</td>
<td>SHV (especially SHV2, SHV5) and TEM (especially TEM26, TEM51)</td>
</tr>
<tr>
<td>CTX-M (especially CTX-M15)</td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td>Respiratory tract, intra-abdominal, and bloodstream infections</td>
</tr>
<tr>
<td>Most often UTIs, but also bacteraemia and gastroenteritis</td>
<td></td>
</tr>
<tr>
<td>Susceptibilities</td>
<td>Resistance to all the penicillins and cephalosporins. High-level resistance to other classes of antibiotics, especially fluoroquinolones and co-trimoxazole</td>
</tr>
<tr>
<td>Most isolates often not clonally related, although clusters have been described in Canada, the UK, Italy, and Spain</td>
<td>Most often clonally related</td>
</tr>
<tr>
<td>Molecular epidemiology</td>
<td></td>
</tr>
<tr>
<td>Risk factors</td>
<td>Longer length of hospital stay; severity of illness (more severe, the higher the risk); longer time in the intensive-care unit; intubations and mechanical ventilation; urinary or arterial catheterisation; previous exposure to antibiotics (especially cephalosporins)</td>
</tr>
<tr>
<td>Repeat UTIs and underlying renal pathology; previous antibiotics including cephalosporins and fluoroquinolones; previous hospitalisation; nursing-home residents; older men and women; diabetes mellitus; underlying liver pathology</td>
<td></td>
</tr>
</tbody>
</table>

UTI = urinary-tract infection.

Table 2: Characteristics of infections caused by ESBL-producing bacteria

Pitout JDD et al. Lancet ID 2008;8:159
MDR-GNB in Community
ESBLs – CTX-M

• CTX-M-15 worldwide
 — New Delhi 1999; US 2003
• Originated *Kluyvera* spp.
• True community pathogens
• Associated UTI/BSI
• Most common older adults
• Quinolone resistance common
 — *E. coli, Klebsiella, Proteus*

ESBL in LTCF Prevalence

<table>
<thead>
<tr>
<th>Author (Date)</th>
<th>Isolates N (%)</th>
<th>E. coli</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muller (02)</td>
<td>200 (16-62)</td>
<td>yes</td>
<td>15 LTCF (Ontario, Canada)</td>
</tr>
<tr>
<td>Rooney (09)</td>
<td>58/294 (49%)</td>
<td>yes CTX-M-15</td>
<td>16 LTCF (N. Ireland)</td>
</tr>
<tr>
<td>March (09)</td>
<td>56/111 (64%)</td>
<td>yes CTX-M</td>
<td>LTCF (Italy)</td>
</tr>
<tr>
<td>Van der Mee-Marquet (10)</td>
<td>9/49 (22%)</td>
<td>CTX-M-15</td>
<td>LTCF (France)</td>
</tr>
<tr>
<td>Arvand (13)</td>
<td>25/240</td>
<td>CTX-M-15</td>
<td>11 LTCF (Germany)</td>
</tr>
<tr>
<td>Cochard (14)</td>
<td>114/1155 (9.9%)</td>
<td>Klebsiella sp (14)</td>
<td>38 LTCF (France)</td>
</tr>
<tr>
<td>Zhao (15)</td>
<td>183/487 (46.9%)</td>
<td>CTX-M (99%)</td>
<td>7 LTCF (Shanghai)</td>
</tr>
<tr>
<td>Willemsen (15)</td>
<td>33/160 (20.6%)</td>
<td>CTX-M-15 (21)</td>
<td>LTCF (Netherlands)</td>
</tr>
</tbody>
</table>
MDR-GNB in LTCF
ESBL

• *E. coli* infection monoclonal outbreaks
 – CTX-M-15, CTX-M-14
 – Ontario (2000-2002) 15 nursing homes
 – UK (2004-2006) 16 nursing homes
 – France (2009)

• Associated with
 – UTI
 – Quinolone, ceftazidime use

• Colonization common
 – urine (22%), rectum (49%)
 – HCW (15%)

• Environmental contamination ~ 0.8% samples

Screening for ESBL Microbiology Definitions

Screen for ESBL

• Disk method
 – cefpodoxime 10 μg
 – ceftazidime 30 μg
 – cefotaxime 30 μg

• Broth
 – cefpodoxime
 – ceftazidime
 – cefotaxime

• Applies only
 – Klebsiella sp
 – E. coli
 – Proteus

Confirm ESBL (+)

• Double disk diffusion
 – ATB alone
 – ATB + β lactamase inh
 – 5 mm zone increase

• Broth
 – ATB alone
 – ATB + β lactamase inh
 – 2-fold reduction MIC

• PCR/molecular typing
 – CTX-M

ESBL Testing

Positive ESBL Double Disk Test

- Susceptible Cefotaxime plus Clavulanic acid
- Resistant Cefotaxime
- Susceptible Ceftazidime plus Clavulanic acid
- Resistant Ceftazidime
ESBL Screening
When, Who, What to Consider?

• Increase infection rates
 — 3rd 4th cephalosporins, monobactams
 — Quinolones
 — *E. coli* ST 131

• No specific risk factors

• Urine and rectum

CarbapenemR Enterobacteriaceae
What Are They?

- Carbapenems – antibiotics of last resort
- Enterobacteriaceae
 - gram negative bacilli
 - lactose fermenters
 - not *Pseudomonas* or *Acinetobacter*
- Multiple mechanisms of carbapenemR
 - inactivation by key enzymes the main concern
 - not all CRE produce carbapenemases (CPE)
 - many labs can identify CRE but not CPE
Carbapenem Resistance Identification – A Major Issue

• Carbapenemase- producing CRE (CPE)
 — spreading rapidly world wide
 — resistant majority antibiotic classes
 — invasive infections 40-50% mortality
CarbapenemR Enterobacteriaceae (CRE) Identification-Major Issues

• There are many carbapenemases
 – *Klebsiella pneumoniae* carbapenemase (KPC)
 – Verona integron metallo-β-lactamase (VIM)
 – Imipenemase metallo-β-lactamase (IMP)
 – Oxacillinase-48-type carbapenemases (OXA-48)
 – New Delhi metallo-β-lactamase-1 (NDM-1)

• Carbapenemases vary with geography
Carbapenem Resistance (CRE) KPCs

Carbapenem Resistance (CRE)
Metallo-β-lactamases (MBL)

Metallo-β-lactamases
New Delhi (NDM-1)

Metallo-β-lactamases NDM-1

- **Exposure endemic areas**
 - travelers
 - medical tourists
 - military

- **Now non-endemic acquisition**
 - France, Italy, Canada
 - community, nursing homes, rehabilitation units
 - no travel history
 - evidence transmission
 - spread multiple facilities
 - older patients

K. Pneumoniae Carbapenemases (KPCs)

LTCFs & LTACHs

- USA, Israel (2008-2011)
- Older adults, co-morbidities, devices
- Most admitted from post-acute care facilities
- Mortality 35-69%
- Mostly related clones
 - *K. pneumoniae* (38/76), ST-258
 - mostly urinary
 - *E. coli* (2)

CRE in LTCF Prevalence

<table>
<thead>
<tr>
<th>Author (Date)</th>
<th>N (%)</th>
<th>What</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Munoz-Price (2010)</td>
<td>8/39 (21%)</td>
<td>KP-CPE</td>
<td>LTACH (US)</td>
</tr>
<tr>
<td>Mills (2011)</td>
<td>7/100 (7%)</td>
<td>KP-CPE</td>
<td>LTCF (US)</td>
</tr>
<tr>
<td>Ben-David (2011)</td>
<td>75/357 (21%)</td>
<td>KP-CRE</td>
<td>LTCF (Israel)</td>
</tr>
<tr>
<td>Marchaim (2012)</td>
<td>42/93 (42.5%)</td>
<td>CRE</td>
<td>Hosp admit LTCF (US)</td>
</tr>
<tr>
<td>Lewis (2013)</td>
<td>20/262 (7.6%)</td>
<td>CPE</td>
<td>LTACH (US)</td>
</tr>
<tr>
<td>Saegeman (2015)</td>
<td>1/257 (0.4%)</td>
<td>CPE</td>
<td>LTCF (Belgium)</td>
</tr>
</tbody>
</table>

LTACH vs SNF
- CRE present on admission to hospital
- Proportion of clinical isolates from lab collections
Screening for CRE
Microbiology Definitions

Screen for CRE
• MIC ≥ 8 μg/ml
 – doripenem,
 – imipenem,
 – meropenem
• MIC ≥ 2 μg/ml
 – ertapenem
• Intrinsic imipenemR
 – Morganella, Proteus, Providencia
 – Must be resistant to another carbapenem

Confirm CPE (+)
• Modified Hodge Test
 – disk test, easy
 – false positives
• CARBA NP agar
• MBL inhibition assays
• PCR/molecular tests
 – KPC, VIM, NDM-1
 – IMP, OXA-48

CDC. CRE Tool Kit Update – Nov 2015; Hrbak J CMI 2014;20:839
Modified Hodge Test
CPE Detection

Lawn of *E. coli* ATCC 25922
1:10 dilution of a
0.5 McFarland suspension

Test isolates
Imipenem disk

Described by Lee et al. CMI, 7, 88-102. 2001.
CRE Screening in LTCF
What to Use?

- 3 Belgian SNF & Rehabilitation Center
- Access screening methods for CPE
 - optimal method & site not known
 - swab – visible fecal staining best
 - broth enrichment not helpful
 - MacConkey agar helps-adequate # gnb
 - chromogenic agars no benefit ↑ incubation leads to gpc overgrowth

CRE Screening
Who to Consider?

- Patients at risk
 - Healthcare setting with high rate CPE
 - overnight stay last 6-12 months
 - Foreign countries with CPE
 - ICU patients
 - Transplant patients
 - Immunocompromised

CRE Screening
When to Screen?

- Screen contacts of known CRE (+) pts
 - most important if CPE (+) pts
 - contacts with epidemiological link
 - roommates
 - common HCW
 - wards

- Active surveillance
 - high CPE rates
 - outbreaks CRE
 - control measure

CRE Screening
What Sites to Screen?

• Patients
 – stool, rectum, peri-rectal most often
 – skin, wounds

• Environment
 – seems uncommon

K. pneumoniae CRE Detection in 6 LTACHs

<table>
<thead>
<tr>
<th>Site</th>
<th>Positive Cultures (N=24)</th>
<th>Sensitivity% (95%C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin Sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inguinal</td>
<td>19</td>
<td>79 (58-93)</td>
</tr>
<tr>
<td>axillary</td>
<td>18</td>
<td>75 (53-90)</td>
</tr>
<tr>
<td>upper back</td>
<td>6</td>
<td>25 (10-47)</td>
</tr>
<tr>
<td>antecubital fossa</td>
<td>6</td>
<td>25 (10-47)</td>
</tr>
<tr>
<td>Non-Skin Sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rectal</td>
<td>21</td>
<td>88 (68-97)</td>
</tr>
<tr>
<td>urine</td>
<td>10</td>
<td>53 (29-76)</td>
</tr>
<tr>
<td>pharynx/trachea</td>
<td>10</td>
<td>42 (22-63)</td>
</tr>
<tr>
<td>Combined Sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rectal & inguinal</td>
<td>24</td>
<td>100 (86-100)</td>
</tr>
<tr>
<td>rectal & axillary</td>
<td>23</td>
<td>96 (79-100)</td>
</tr>
<tr>
<td>axillary & inguinal</td>
<td>22</td>
<td>92 (73-99)</td>
</tr>
</tbody>
</table>

Thurlow CJ et al. ICHE 2013;34:56-61
MDR A. Baumanii in LTCF

Significance

- Outbreaks MDR Acinetobacter reported
- LTCF-LTACH colonization (28-34%)
 - 50% (+) on hospital admission
 - ventilated residents
 - tracheostomy/sputum main site
 - environmental contamination ~10%
 - aerosolization?
 - combat injuries
- Mortality ~ 35%
 - BSI, pneumonia, UTI
A. Baumanii in LTCF Screening Issues

- Acinetobacter – 30 species
 - phenotype not helpful
 - some species not resistant or pathogens
 - A. calcoaceticus-baumannii complex
- Preliminary ID by fermentation (API 20E)
- Speciation difficult
 - MALDI-TOF
- MDR – resistant 3 or more classes
- Not all have carbapenemase
A. baumannii Complex in LTCF Prevalence

<table>
<thead>
<tr>
<th>Author (Date)</th>
<th>N (%)</th>
<th>What</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stephens (2007)</td>
<td>70/151 (46.4)</td>
<td>MDR</td>
<td>LTACH/Hosp Network (US)</td>
</tr>
<tr>
<td>Furuno (2008)</td>
<td>41/147 (28%)</td>
<td>Not MDR</td>
<td>LTCF (US)</td>
</tr>
<tr>
<td>Stengstock (2010)</td>
<td>153/280 (53)</td>
<td>MDR</td>
<td>17 LTCF (US)</td>
</tr>
<tr>
<td>Perez (2010)</td>
<td>8/39 (20.5)</td>
<td>CRAB OXA-23</td>
<td>LTCAH (US)</td>
</tr>
<tr>
<td>Mortensen (2014)</td>
<td>14/70 (20)</td>
<td>MDR (86%) CRAB (60%)</td>
<td>subacute + vents (US) LTCF</td>
</tr>
<tr>
<td>Mody (2015)</td>
<td>25/168 (14.9)</td>
<td>MDR CRAB</td>
<td>4 LTCF (US)</td>
</tr>
</tbody>
</table>
Screening for CRAB Microbiology Definitions

Screen for CRAB
• CHROMAcinetobacter
• MIC $\geq 8 \, \mu g/ml$
 – doripenem,
 – imipenem,
 – meropenem

Confirm enzyme (+)
• Modified Hodge Test
• PCR/molecular tests
 – PFGE
 – OXA-23, OXA-24/40
 – OXA-58
 – IMP, VIM, SIM

A. baumanii in LTCF
Who to Screen?
Screening for CRAB
What Sites?

<table>
<thead>
<tr>
<th>Sites from 129 ICU Patients</th>
<th>CRE colonized N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td></td>
</tr>
<tr>
<td>tracheal aspirate</td>
<td>35 (27)</td>
</tr>
<tr>
<td>rectum</td>
<td>24 (19)</td>
</tr>
<tr>
<td>sternal skin</td>
<td>7 (5)</td>
</tr>
<tr>
<td>urine</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Detection CRE</td>
<td></td>
</tr>
<tr>
<td>any 1 site</td>
<td>70 (54)</td>
</tr>
<tr>
<td>trachea & rectum</td>
<td>97 (75)</td>
</tr>
<tr>
<td>trachea, rectum & sternum</td>
<td>104 (80)</td>
</tr>
<tr>
<td>all 4 sites</td>
<td>108 (85)</td>
</tr>
</tbody>
</table>

MDRO GNB in LTCF
Summary

• MDRO-GPC get more publicity!
• MDRO-GNB an increasing problem
• Transfer resistance between GNB easy
• Confers resistance to all antibiotics
• Serious infections with high mortality
• Detection MDRO-GNB is not simple
• Impact on infection control resources