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Light microscope

»Important role in laboratory diagnosis

»Can be done quickly

»Accuracy depends on
»experience of the technical staff

»quality of equipment




Microscopic examination in Microbiology

Gram stain

Acid-fast and modified acid-fast stains
Fluorescent stains

Wet mounts

A S

India ink (colloidal carbon) stain



Microscopic examination in Microbiology




Limitation of Light microscopy

»Requires the head and arms to be locked in a forward position

»Inclined to ward the microscope with rounded shoulders

»70.5% of microscopist reported neck, shoulder, or upper back pain
during microscopy

»56% had an increased prevalence of hand or wrist symptoms



AFB Smear Screening

»Sputum-smear microscopy is the most widely used method for detecting TB

»Sensitivity depends on experience of the technical staff

»Labor intensive
»3-5 mins per smear
»Max 80 smears per day per staff







Al-Based automated AFB Smear Screening System

1. Smear preparation machine

2. Automated AFB Stainer

3. Automated AFB Smear Scanner

4. Al-based algorithm / Convolutional neural network (CNN)




Automated smear preparation machine
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Automated AFB smear Stainer
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Automated AFB Smear Scanner
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Automated AFB Smear Scanner




Convolutional neural network (CNN)

»Deep learning model

» Particularly designed for learning of two-dimensional data such as images

» Hierarchical structure of learning layers

»Improve the accuracy of the feedforward-backpropagation training procedure
»Model very complex features

»Provide a general-purpose learning framework not requiring beforehand feature
extraction and fine-tuning



Overview of the CNN models

Model Depth Input Size
50 layers (Convolutional +
ResNet50 Fully Connected) 224 x 224
: 48 layers (Inception modules +
Inception v3 Fully Connected) 299 % 299
: 71 layers (Convolutional +
X
ception Separable Convolutions) 299 % 299
169 layers (Convolutional +
DenseNet169 Pooling + Batch 224 x 224
Normalization)
EfficientNet-B0 Varied due to compound 224 x 224
scaling method
RegNetY-064 64 stages (Sequence of 224 x 224
Convolutional layers)
NASNet-A Large 280 layers (Convolutional) 332 x 332
Vit_base_patch16_224 12 Transformer layers 224 x 224
Swin Transformer Small 110 layers (due to hierarchical 224 x 224
structure)




The architecture of CNN model

3.2.2. Inception v3

Szegedy et al. created a method to learn multi-level features more effectively. This
goal was accomplished by employing modules with parallel convolutions of varying sizes,
which minimized computation while also addressing the problem of overfitting [33]. The
structure is shown in Figure 3.
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Figure 3. The architecture of the Inception V3 model.



Figure 1. Examples of annotations. (a) Whole slide image of lung tissue containing Mycobacterium
tuberculosis; Ziehl-Neelsen staining, scanning magnification view; (b) cropped patch image of (a),
400x; (c) annotated short, rod-shaped bacilli.



Diagnostic performance

Table 4. Diagnostic Performance of MTSS and CM for Detection of TB Compared to Culture Methods

Sites Sensitivity (%)

Al Microscopy Correct No./Total No. (%) 903/1,144 (78.9)
95% CI 76.6-81.3

Conventional Correct No./Total No. (%) 886/1,144 (77.4)
Microscopy 95% Cl 75.0-79.9

Specificity (%)
2,496/2,657 (93.9)
93.0-94.8
2,523/2,657 (95.0)
94.1-95.8

PPV (%)
903/1,064 (84.9)
82.7-87.0

886/1,020 (86.9)
84.8-88.9

NPV (%)
2,496/2,737 (91.2)
90.1-92.3
2,523/2,781 (90.7)
89.6-91.8
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Application of Al I\/Ilcroscopy in Mlcroblology

» AFB smear screening

» Fungus identification
» Parasite identification

» Agar plate examination
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