AFCD's measures in addressing Antimicrobial Resistance (AMR) in Hong Kong

Dr Michelle Yeung
Principal Veterinary Officer
24 October 2025

Agriculture, Fisheries and Conservation Department

Hong Kong's response to AMR

- In May 2016, the Government set up a High Level Steering Committee on AMR (HLSC) to formulate strategies in collaboration with the relevant sectors to tackle the AMR threat.
- Under HLSC, Expert Committee on Antimicrobial Resistance (EC) was established in October 2016 to provide expert opinions on priority areas for actions for HLSC's consideration.
- Hong Kong Strategy and Action Plan on Antimicrobial Resistance was launched in July 2017, adopting the principles of the WHO Global Action Plan and One Health Approach

Hong Kong Strategy and Action Plan on Antimicrobial Resistance

- Hong Kong Strategy and Action Plan on Antimicrobial Resistance (2017-2022) was launched in July 2017. It outlined activities under six key areas:
 - 1. Strengthen knowledge through surveillance and research
 - 2. Optimise use of antimicrobials in humans and animals
 - 3. Reduce incidence of infection through effective sanitation, hygiene and preventive measures
 - 4. Improve awareness and understanding of AMR through effective communication, education and training
 - 5. Promote research on AMR
 - 6. Strengthen partnerships and foster engagem<mark>en</mark>t of relevant stakeholders.
- The second 5-year plan: Hong Kong Strategy and Action Plan on Antimicrobial Resistance (2023-27) was launched in November 2022.

Hong Kong Strategy and Action Plan on Antimicrobial Resistance 2023 -2027

One Health Approach

AFCD Organization Chart for AMR

Hong Kong Livestock Production

- 43 licensed pig farms and 29 licensed poultry farms
- Among the food supply for local consumption, 12 % live pigs came from local farms while 100 % live chickens came from local farms.
- Supervised by AFCD in accordance with the Public Health (Animals and Birds) (Licensing of Livestock Keeping) Regulation (Cap. 139L)
- AFCD had been issuing "Antibiotic Permit" to local livestock farmers and ceased doing so since 1st January 2025.
- Commonly used antibiotics includes (i) amoxicillin, tylosin & tilmicosin for chicken farms (ii) amoxicillin, florfenicol & lincomycin for pig farms

Hong Kong's Fresh Chicken Supply — A Local Perspective (1)

- Since 2016, the importation of live chickens from Mainland China was ceased, shifting entirely to locally produced fresh broilers to meet market demand.
- The region's broiler farms are predominantly located in the New Territories, with a notable concentration in Yuen Long.
- Currently, 28 active licensed farms collectively supply an average of 10,000 to 12,000 live chickens daily, ensuring a steady flow of fresh chicken to local markets.
- The majority of these farms specialise in the production of **yellow-feathered chickens**, a variety favoured by local consumers.

Hong Kong's Fresh Chicken Supply — A Local Perspective (2)

- Small to medium in scale. Each farm typically houses several hundred to a few thousand birds, sufficient to meet the territory's fresh poultry needs
- Day-old chicks (DOCs) are sourced from three channels: importation from Mainland China, on-farm hatcheries, and registered hatcheries within Hong Kong.
- Broiler chickens are generally categorised :
 - Less than 30 days (小雞early stage)
 - 30-60 days (中雞middle stage)
 - 60–90 days
 - 大雞Fast-growing broilers-market weight at around 60 days vs slow-growing varieties -marketed at 90 days.)

Hong Kong's Fresh Pig Supply — A Local Perspective (1)

• Licensed Pig Farms: 40 active licensed pig farms, primarily situated in the New Territories.

- Farm Scale and Capacity:
 - Small to Medium Operations: 77% of farms are small (<1,000 pigs) or medium-sized (1,000–2,000 pigs).
 - Total Holding Capacity: About 75,000 pigs, with a current stock of around 60,000.
- Breed: Yorkshire (Large white), Landrace, Duroc, Berkshire

Hong Kong's Fresh Pig Supply — A Local Perspective (2)

- Most piglets are bred and raised locally using a farrow-to-finish system.
- Suckling Piglets: piglets that have been born but have not yet been weaned from the sow.
- After weaning, pigs are raised specifically for meat production. They are categorized as follows:
- 小豬 (Piglets): Less than 30 kg
- 中豬 (Grower Pigs): 30 to 60 kg
- 大豬 (Finisher Pigs): Over 60 kg (Market weight around 90-130 kg)

Role of local Farms in AMR Management

Due to the **limited scale** of Hong Kong's production animal sector, its contribution to the **overall resistance gene pool** in food of animal origin is **minimal**.

Nonetheless, local farms must uphold robust disease prevention measures and implement antimicrobial stewardship programmes as integral elements of comprehensive farm health management.

Antimicrobial Resistance Surveillance Section

- Established in **2017** in response to the global AMR threat
- To lead the actions targeting Animal Health sector in 4 key areas listed in the Hong Kong Strategy and Action Plan :
- 1. Strengthen knowledge through surveillance
- 2. Optimise use of antimicrobials in animals
- 3. Reduce incidence of infection through effective sanitation, hygiene and preventive measures
- 4. Improve awareness and understanding of an<mark>ti</mark>microbial resistance through effective communication, education and training

Key Area 1. Strengthen knowledge through surveillance

- Consultancy study was commissioned in October 2017
- With the recommendations and findings of the consultancy study, a surveillance systems for monitoring antimicrobial usage (AMU) and antimicrobial resistance (AMR) on food animals were devised and initiated in mid-2019

Antimicrobial usage (AMU) surveillance -Data Collection Approach

Dual Data Sources:

- Farmer Reports: Monthly submissions detailing antimicrobial usage.
- Audit Testing: Independent testing of feed and faecal waste to detect unreported or unknown usage.

Record Keeping:

• **Simple forms** provided to farmers to standardise data collection.

Rationale:

 Comprehensive sales data are unavailable due to limited local drug supply; hence, direct farm-level data and audits are essential.

| Year & Month: Year | Month | Year |

AMU surveillance -Key Metric : mg/kg TAB

Antimicrobials (in mg):

- active ingredient, antimicrobial class, reported usage in ml (solution) or kg (solid), and concentration in mg/ml (solution) or mg/kg (solid).

Metric: mg /kg TAB (target animal biomass)

Why mg/kg TAB?

- Chosen as the primary metric based on 2019 consultancy findings.
- Adjusts for total annual animal biomass, allowing fair comparison across farms of varying sizes and production levels.

Calculation

- AMU in TAB (mg/kg TAB) in pigs=(Total AM in $mg \div Number$ of months with AMU submission x 12)/(Number of finishers x 130 kg + Number of sows x 240 kg)
- AMU in TAB (mg/kg TAB) in chickens=(Total AM in mg ÷ Number of months with AMU submission x 12)/(Number of broilers x 1.75 kg + Number of breeders x 3 kg)

Agriculture, Fisheries and Conservation Department

Antimicrobial Use (AMU) surveillance

- Monthly reports submitted voluntarily by farmers
- Simple record form for farmers to record information on storage and usage of antimicrobials
- AMU database to record, analyse and verify information collected
- Audit checks collection and testing of audit samples such as animal feed & faecal wastes to detect unreported / inadvertent AMU

AMU surveillance -Key antimicrobials

WHO 2024 Medically Important Antimicrobials

 The WHO's updated list identifies highest-priority critically important antimicrobials (HPCIAs) that can also be used in animals include:

Not used in chickens since 2020

- 3rd/4th-generation cephalosporins
- Fluoroquinolones
- Colistin
- Fosfomycin (phosphonic acid derivatives)

Not use in chicken farms

No records use in food animals

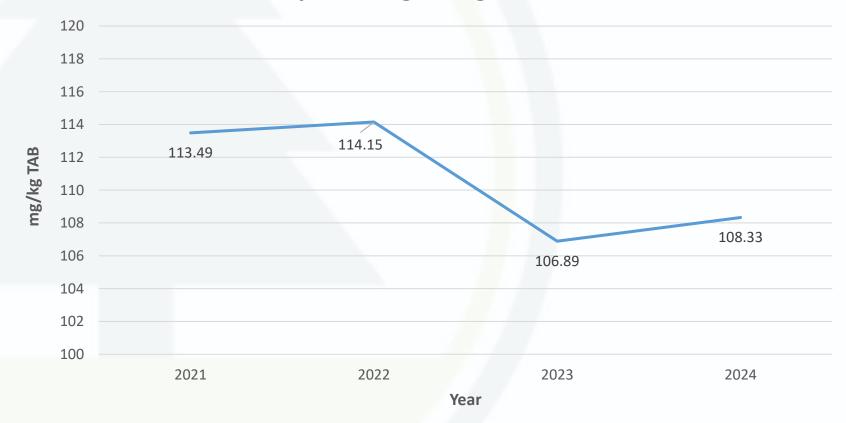
AMU Surveillance Audit Testing of Feed and Faecal Waste

- Feed testing commenced in mid-2018
- Total of 516 feed samples collected and tested from 2018-2024
 - 324 samples from pig farms
 - 192 samples from chicken farms
- Faecal waste testing commenced in 2020
- Total of 519 faecal waste samples collected and tested from 2020-2024
 - 281 samples from pig farms
 - 238 samples from chicken farms
- Results were crosschecked against farmers' reported AMU, as well as further inquiries with the farmers

AMU Surveillance – Pig Farms

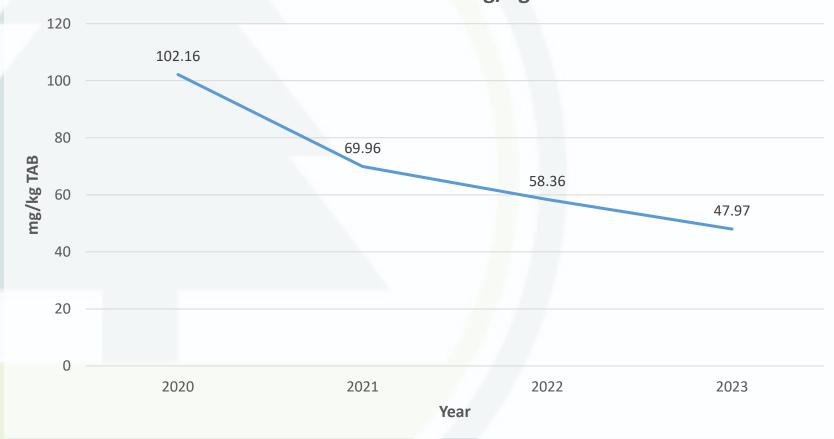
Key results on antimicrobial usage

Time Period	2020	2021	2022	2023	2024
Monthly average AMU reporting rate	76%	86%	88.7%	85.1%	85.5%
Number of farmers reporting AMU at least once in the year	38/43	39/43	40/43	39/43	37/43
Calculated total quantity of AMU in kg	1933.04	1582.60	1871.54	1575.52	1209.43
AMU in mg/kg TAB	123.72	105.56	113.18	101.94	109.86
Rolling average of AMU in mg/kg TAB over the past 3 years	-	113.49	114.15	106.89	108.33
Median of AMU in mg/kg TAB	102.16	69.96	58.36	47.97	-


- Statistical decreasing trend detected in the median of AMU in mg/kg TAB from 2020 to 2023 with p-value of 0.089 using Mann-Kendall Trend test
- Significant decrease in median of AMU in mg/kg TAB when comparing AMU in 2020 to 2023 with p-value of 0.025 using Permutation test after removing outlier data detected by Tukey Fence (k=1.5)
- 10 farms were not in operation for the majority of 2024 due to African swine fever outbreaks
- Usage of 3rd and 4th generation cephalosporins (mg/kg TAB) decreased from 2023
- Quinolone usage (mg/kg TAB) also declined in 2024

AMU Surveillance – Pig Farms

3 year rolling average in TAB



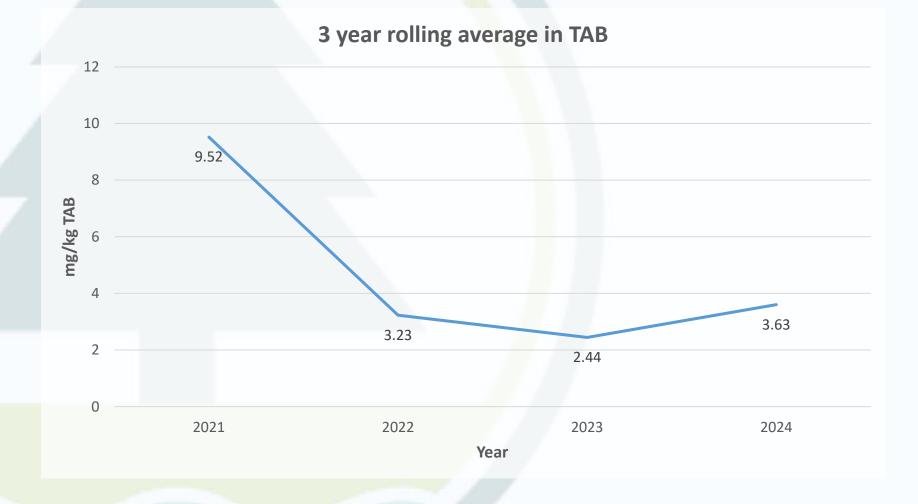
AMU Surveillance – Pig Farms

Median of AMU in mg/kg TAB

AMU Surveillance – Chicken Farms

Key results on antimicrobial usage

Time Period	2020	2021	2022	2023	2024
Monthly average AMU reporting rate	90%	93%	91%	93%	93%
Number of farmers reporting AMU at least once in the year	27/29	27/29	27/29	27/29	27/29
Calculated total quantity of AMU in kg	43.40	15.41	11.76	23.51*	36.69*
AMU in mg/kg TAB	5.83	2.10	1.76	3.46*	5.67*
Rolling average of AMU in mg/kg TAB over the past 3 years	ì	9.52	3.23	2.44	3.63
Median of AMU in mg/kg TAB	0	0	0	0	0


^{*}The increase in AMU was attributed to the prescription of antimicrobials by the City University ambulatory team for treatment of disease outbreaks in chicken farms.

- Decreased number of farms using AMs from 11 in 2023 to 7 in 2024
- Decreased number of farms using fluroquinolones from 6 in 2023 to 1 in 2024
- No reported usage of 3rd and 4th generation cephalosporins in the past 4 years
- The highest user is a breeder farm
- AM usage is rare in chicken farming in Hong Kong slight increases could occur in response to disease outbreaks on

a small number of farms

AMU Surveillance – Chicken Farms

AMU Surveillance Summary Findings

Findings of the first few years of the surveillance programme:

- a. Chicken producers use less antimicrobials than pig producers (life span, how animals are reared)
- b. Farmers reported no known use of AMs for growth promotion
- c. Decreasing trend of AMU in pig and chickens farms

Antimicrobial resistance (AMR) surveillance

- Surveillance of AMR in commensals (E.coli and Enterococcus)
- Faecal samples (pigs), cloacal swab & faecal samples (chickens)

Antimicrobial Resistance: Key Pathogens of Concern

Prioritization of Antimicrobial-Resistant Pathogens

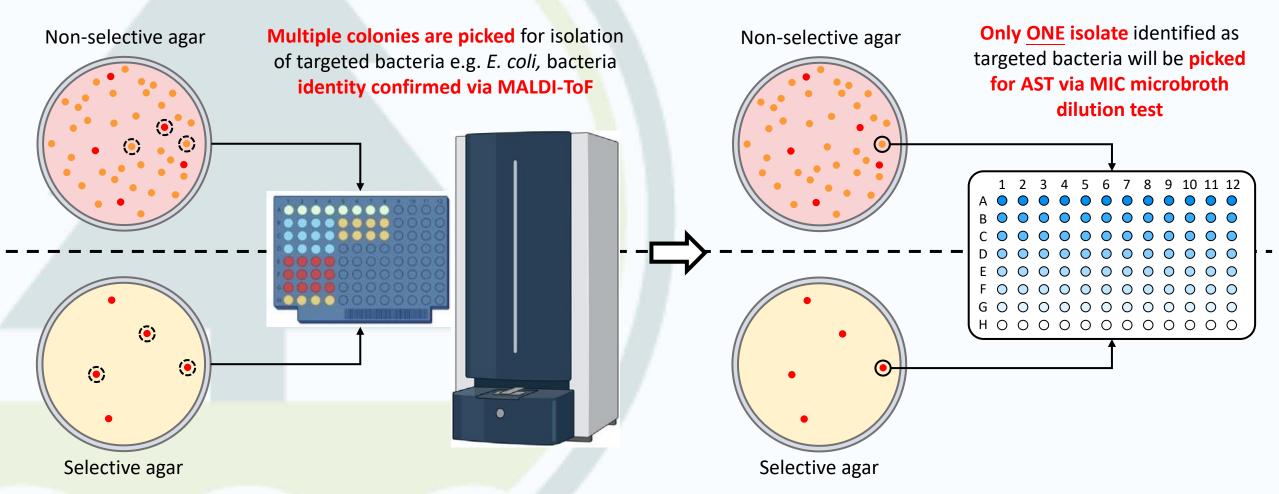
• In accordance with the **2024 WHO Bacterial Priority Pathogens List**, the following microorganisms represent the **most urgent global threats** due to rising multidrug resistance.

Critical Priority Microorganisms

- Carbapenem-resistant Enterobacterales (CRE) (including Klebsiella pneumoniae, Escherichia coli)
- Third-generation cephalosporin-resistant Enterobacterales including Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae

High Priority Microorganisms

- Methicillin-resistant Staphylococcus aureus (MRSA)
 - Community-associated (CA-MRSA)
 - Healthcare-associated (HA-MRSA)
 - Livestock-associated (LA-MRSA)
- Vancomycin-resistant Enterococcus (VRE)



Comprehensive Approach to Antimicrobial Resistance (AMR) Surveillance

- Dual Testing Strategies:
 - All isolates undergo phenotypic antimicrobial susceptibility testing (AST), while selected isolates receive detailed genotypic analysis.
- **Key Indicator Organism**: Commensal *Escherichia coli* is utilised as the primary indicator for AMR surveillance.
- Culture Techniques:
 - Non-selective culture assesses the overall prevalence of resistance.
 - Selective culture detects low-level carriage of including Extended-spectrum β-lactamase (ESBL)-producing and carbapenem-resistant *E. coli* strains.
- Antimicrobial Susceptibility Testing (AST): Isolates are tested against a broad panel of antimicrobials, including those critically important for human medicine, to determine minimum inhibitory concentrations (MICs). Interpretation follows Clinical and Laboratory Standards Institute (CLSI) guidelines.
- Genotypic Analysis: Focused on multidrug-resistant E. coli, particularly ESBL-R and carbapenem-resistant strains. Provides insights into sequence types, resistance genes, and plasmid profiles.

AMR Surveillance – Method

- Currently TWO types of medium are used for culturing *E. coli* from faecal/cloacal swab samples
 - Non-selective (MacConkey agar) & Selective (Brilliance ESBL agar & chromID CARBA SMART agar)

 Picking multiple colonies during the isolation / identification phase to ensure the targeted bacteria is picked

AMR Surveillance – Method

- 1. Non-selective media:
 - For routine AMR monitoring/surveillance; allows growth and isolation of commensal *E. coli* in samples
 - Provides information of the overall AMR profile / prevalence of bacterial population of samples
- 2. Selective media:
 - Allow detection of specific AMR (ESBL, AmpC, CRE) E. coli even at low level in samples by suppressing commensal E. coli growth
- Use of non-selective media was employed/recommended by other leading countries/organisations in farm animal AMR surveillance, allowing international data comparison

	Organisation /	Voor	Use of / Sugge	ested use of	Deferences			
Country	Year	Non-selective media	Selective media	References				
4	FAO	2019	✓		https://openknowledge.fao.org/server/api/core/bitstreams/f31e70b6-b9e0-41b6-916a-1cb0c3654c4d/content			
	Canada CIPARS	2019	✓		https://publications.gc.ca/collections/collection_2023/aspc-phac/HP2-4-2019-3-eng.pdf			
	UK VARSS	2023	✓	✓	https://assets.publishing.service.gov.uk/media/6718c19fe319b91ef09e3 8b6/2881449-v2-VARSS_2022_Report_v3October_2024_Updatepdf			
	EFSA	2023	✓	✓	https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/sp.efsa.2023.EN-7826			

AMR Surveillance – Method

- ECDC, EFSA and EMA have jointly established a list of outcome indicators for assessing progress in reducing AMU and AMR in food-producing animals in 2017 stated:
 - 1. Primary summary indicator consists of proportion of indicator *E. coli* that are fully susceptible to tested panel of antimicrobials; hence require the use of non-selective media
 - 2. Secondary summary indicator consists of the proportion of samples that are positive of ESBL-/AmpC-producing indicator *E. coli*; hence require the use of selective media

https://www.efsa.europa.eu/en/efsajournal/pub/5017

The UK VARSS 2022 report commented on the use of indicator E. coli with the following quote:

"Therefore, these selective methods are **not able to quantify the risk** which these bacteria may potentially pose to human or animal health"

https://assets.publishing.service.gov.uk/media/6718c19fe319b91ef09e3 8b6/2881449-v2-VARSS_2022_Report_v3__October_2024_Update_.pdf

• Both non-selective and selective media should be used for AMR surveillance: non-selective media (commensal *E. coli*) provides an overall assessment of AMR in farms and allow general public health risk assessment; selective media (specific AMR *E. coli*) allows in-depth understanding and specific monitoring of certain AMR (phenotypic and genotypic) with limited value on public health risk assessment alone

Antimicrobial resistance (AMR) surveillance

Chicken Farms

- Cloacal swabs collected from individual market-weight chickens, prioritising different houses or distant cages
- Environmental drag swabs taken from areas near cloacal sampling sites

Pig Farms

- Fresh faecal samples (~10g) collected from individual market-weight pigs
- Samples taken from randomly selected sheds or barns

Fisheries and Conservation Departmen
of the Hong Kong Special Administrative Region

AMR Surveillance – Pig Farms

Number of samples positive for resistant bacteria cultured

	Time Period	2020		20)21	2022		2023		2024 (Jan-Jun)	
	No. of Sample ¹ Collected	152		204		195		186		90	
	Culture media [non-selective (non-S)/selective (S) ²]	Non-S	S	Non-S	S	Non-S	S	Non-S	S	Non-S	S
4	No. of sample positive for suspected extended spectrum beta-lactamase (ESBL)-producing ³ <i>E coli</i>	4 (2.6%)	120 (78.9%)	4 (2.0%)	187 (91.7%)	6 (3.1%)	169 (86.7%)	8 (4.3%)	170 (91.4%)	2 (2.2%)	78 (86.7%)
	No. of samples positive for carbapenem-resistant ⁴ <i>E coli</i>	0 (0%)	2 (1.3%)	0 (0%)	3 (1.5%)	1 (0.5%)	4 (2.1%)	0 (0%)	10 (5.3%)	0 (0%)	8 (8.9%)
	No. of samples positive for vancomycin-resistant Enterococcus (VRE) ⁵	ì	0 (0%)	-	0 (0%)	1	0 (0%)	1	0 (0%)	1	0 (0%)

¹Samples collected were faecal samples.

²Selective media used are media containing antimicrobial agents intended for detection of specific AMR (ESBL, CRE).

³Suspected ESBL is determined by ceftiofur resistance (3rd generation cephalosporin).

⁴Carbapenem-resistance is determined by meropenem resistance.

⁵Culturing of Enterococcus was performed using enrichment medium.

AMR Surveillance – Chicken Farms

Number of samples positive for resistant bacteria cultured

Time Period	2020		20	21	2022		2023		2024 (Jan-Jun)	
No. of Sample ¹ Collected	61		207		195		189		78	
Culture media [non-selective (non-S)/selective (S) ²]	Non-S	S	Non-S	S	Non-S	S	Non-S	S	Non-S	S
No. of sample positive for suspected extended spectrum beta-lactamase (ESBL)-producing ³ <i>E coli</i>	9 (14.8%)	47 (77.0%)	50 (24.2%)	170 (82.1%)	38 (19.5%)	144 (73.8%)	34 (18.0%)	149 (78.8%)	18 (23.1%)	63 (80.8%)
No. of samples positive for carbapenem-resistant ⁴ <i>E coli</i>	0 (0%)	1 (1.6%)	0 (0%)	7 (3.4%)	0 (0%)	5 (2.6%)	0 (0%)	1 (0.5%)	0 (0%)	0 (0%)
No. of samples positive for vancomycin-resistant Enterococcus (VRE) ⁵	-	0 (0%)	-	0 (0%)	-	0 (0%)	-	0 (0%)	-	0 (0%)

¹Samples collected were cloacal swabs and environmental drag samples.

²Selective media used are media containing antimicrobial agents intended for detection of specific AMR (ESBL, CRE).

³Suspected ESBL is determined by ceftiofur resistance (3rd generation cephalosporin).

⁴Carbapenem-resistance is determined by meropenem resistance.

⁵Culturing of Enterococcus was performed using enrichment medium.

AMR surveillance findings

Findings of the first few years of the surveillance programme:

- a. No obvious trend observed
- b. Percentage of ESBL-E remained relatively stable & absence of VRE in both chicken and pig farms.
- c. The prevalence of CRE in pig farms accords with findings from across the region.

Industry report

- A detailed analysis of all 2019 AMU & AMR data from pig, chicken and fish farms were included in the industry report, which also includes the results of genetic sequencing of some selected resistant bacteria
- https://www.afcd.gov.hk/english/quarantine/qua_live/qua_live_amr/files/2019AMU-AMR-FullReportFINALv2.pdf

Industry report

- Whole genome sequencing (WGS) findings
 - Selected resistant bacterial isolates were subjected to WGS
 - Isolates were **selected based on MIC results** (e.g. resistance to 3rd generation cephalosporins, multidrug resistant strains, resistance to colistin, carbapenems etc.)
 - For *E. coli* and Salmonella, there was generally good correlation between phenotypic and genotypic resistance results
 - Most of the resistance genes appeared to be carried on plasmids
 - Identification of globally important multi-drug resistant strains of bacteria (e.g. E. coli ST648, monophasic Salmonella 1,4,[5],12 i;-) – resistance for these is unlikely to be generated on local farms

	Strain 1 ST410 O115:H28	Strain 2 ST1674 O11:H25	Strain 3 ST10 O27:H12	Strain 4 ST502 O86:H11 (Haemolytic)	Comment
Aminoglycoside	aac(3)-IV aadA2 aph(3')-Ia aph(3")-Ib aph(4)-Ia aph(6)-Id	aadA2 aph(3")- Ib aph(6)- Id	aac(3)- IId aadA1 aph(3')- Ia aph(3'')- Ib aph(6)- Id	aadA1 aadA2 ant(2")-Ia aph(3")-Ia	
Beta-lactam	bla _{CTX-M-65} bla _{TEM-18}	bla _{TEM-1A}	blа _{тем-1в}	bla _{CMY-4}	
Colistin				mcr-1.1	Colistin gene chromosomal
Fluoroquinolone	qnrS1 gyrA S83L D87N parC S80I parE S458A	qnrS1	oqxA oqxB gyrA S83L D87N parC S57T S80I	oqxB gyrA S83L D87N parC S57T S80I	
Macrolide, lincosamide, streptogramin B	Inu(F)		mph(A)		
Phenicols	floR	floR	floR	catA1 cmlA1	
Sulphonamide, trimethoprim	sul2 dfrA17	sul2 sul3 dfrA12	sul1 sul2 dfrA1	sul3 dfrA12	
Tetracycline	tet(B) tet(M)	tet(A)	tet(A)	tet(A)	
Resistance genes – number of AM classes	8	7	8	8	

Other Study 1: Investigate ESBL-producing (ESBL-) *E. coli* occurrence in local chicken farms

- Aim to study ESBL-E. coli prevalence in locally raised chicken, from hatching till market-ready; faecal/cloacal samples and environmental samples were collected from each of two local chicken farms at different day.
- No carbapenem resistant E. coli (CRE) was identified.
- Result indicates day-old chicks are negative for ESBL-E. coli up till reaching local farms; local farms' environment is positive for ESBL-E. coli; suggesting the environment might serve as ESBL-E. coli reservoir.

Suspected ESBL-producing <i>E. coli</i> isolated from faecal/cloacal samples, using selective agar ¹										
Day	0	2	5	9	13	20	27	35	58	85
Farm M01	No	YES								
Day	0	2	5	9	12	19	25	33	54	80
Farm M03	No	YES								

Suspected ESBL-producing E. coli isolated from environmental samples, using selective agar¹

	Small	cage	Mediu	m Cage	Large Cage		
	Pre-use	Post-use	Pre-use	Post-use	Pre-use	Post-use	
Farm M01	YES	YES	YES	No	No	No	
Farm M03	YES	YES	No	No	No	No	

¹Selective media used are media containing antimicrobial agents intended for detection of specific AMR (ESBL, CRE)

Other Study 2: Investigate ESBL- *E. coli* occurrence in feeds and water in local chicken farms

- Aim to investigate occurrence of ESBL- and carbapenemase-producing E. coli in poultry feed and water
- A total of 35 feed samples and 20 water samples were collected from 7 farms, selective agar¹ was used to isolate the ESBL- and carbapenemase-producing *E. coli*
- 1 feed sample was positive for carbapenem resistant E. coli (CRE)

Sample type	Status	Source	No. of sample	No. of sample positive for ESBL- <i>E. coli</i> (n, %)	No. of sample positive for CRE (n, %)	
Chicken feed	New	Unopened bag	15	1 (6.67%)	0 (0%)	
		Feed mixer	3	1 (33.33%)	0 (0%)	
	In-use	Feeding trough	14	13 (92.86%)	1 (7.14%)	
		Feed trolley	2	1 (50%)	0 (0%)	
		Opened bag	1	0 (0%)	0 (0%)	
Water	Origin	Faucet	4	0 (0%)	0 (0%)	
		well	2	2 (100%)	0 (0%)	
		tank	1	0 (0%)	0 (0%)	
	In-use	Water feeder	13	4 (30.8%)	0 (0%)	

¹Selective media used are media containing antimicrobial agents intended for detection of specific AMR (ESBL, CRE)

Interventions to gradually reduce levels of ESBL-producing E. coli in local food animal farms

- Based on the studies' findings, the following actions has been taken by AFCD:
 - Conducted a survey in February 2025 to collect further information on the cleaning and disinfection practices of local chicken farmers
 - Exploring competitive exclusion using probiotics, considering that modifying the environment and changing farming practices may prove difficult.

Poultry Farm Cleaning & Disinfection Survey - I

- Questionnaire survey conducted in Q1 2025 to understand cleaning and disinfection (C&D) practice in local poultry farms, all 28 operating farms participated
- Some findings include:
 - 1. Majority of farms uses commercial disinfectants recognized by international authorities, with various active ingredients including QACs, glutaraldehyde, potassium peroxymonosulfate etc.
 - 2. Some issues on C&D noted on small no. farms, such as cleaning without the use of cleaning equipment and/or detergent, and insufficient drying time before disinfection *Noteworthy Knowledge Gap
 - 1 farm reported not using any disinfectant
 - 1 farm reported misuse of pesticide for disinfection purpose
 - 3. No statistically significant difference observed for particular step of C&D procedure between farms with higher or lower isolation rate of ESBL-*E. coli* using Chi-squared test comparing the number of farms performing certain practice(s) or not

Poultry Farm Cleaning & Disinfection Survey - II

Some findings include (cont'd)

- 4. **Most** farmers are **aware** of the **importance** of **disinfection** and **use appropriate disinfectants** for C&D
- 5. Survey result consistent with previous study finding suggesting persistence of ESBL-E. coli due to post-cleaning environmental contamination in farms

Follow-up Actions:

- Educational pamphlet on cleaning and disinfection has been prepared and distributed to farmers in April 2025, explaining the purposes and importance of each step
- Further communication has been made with the 2 farmers, who were not using disinfectant or misused pesticide for disinfection, explaining the importance of using effective disinfectant in farm

Exploring Competitive Exclusion using Probiotics

Preparation Stage (First half of 2025)

- Survey: Conduct survey on probiotic usage in local chicken farms
- Farm Selection:
 - Identify farms based on previous ESBL-E. coli positive rates
 - Consider infrastructure and history of using probiotic of the farms
 - Assess farmers' willingness to assist with conducting the study and acceptance to new probiotic practices
- Probiotic Selection:
 - Select appropriate probiotic product with multiple bacterial strains known to modify the gut microbiota.
 - Powder form or premixed with feed.
 - Evaluate both overseas and local suppliers, ensuring ease of communication, purchase, and delivery for farmers' use.

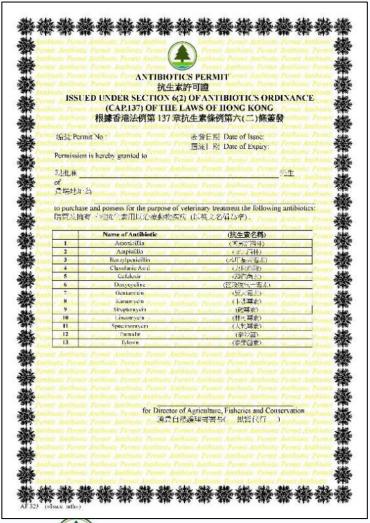
Trial (second half of 2025)

Probiotic use in local chicken farm study: The study is underway

Key Area 2: Optimize use of antimicrobials in animals

Phased withdrawal of Antibiotics Permit

 AFCD commenced phased withdrawal of Antibiotics Permit issued to livestock farmers since Oct 2020. AFCD has ceased issuing the Permit with effect from 1st January 2025.


Codes of Practice (COP)

 To raise awareness and improve knowledge on the proper use of antimicrobials for food animal producers, AFCD has published and distributed three sets of Codes of Practice (COP) on the proper use of antimicrobials for distribution to pig, chicken and fish farmers respectively in 2021. A revised edition of COPs was compiled in 2025.

Further intervention to Optimize AMU Veterinary Prescription-only Medication Supply

- AFCD has been issuing Antibiotic Permit for local chicken and pig farmers to purchase antibiotics as needed
- In October 2020, with City University's provision of veterinary services and drugs to farmers, AFCD commenced phased withdrawal of Antibiotic Permit removing 8 antibiotics at that time
- In July 2022, 6 additional antibiotics were removed from the Permit
- The remaining 13 antibiotics were removed by end of 2024 to cease the issuance of Antibiotic Permit from 2025 onwards
- Since 1st January 2025, AFCD stops issuance of Antibiotic Permit and implements "veterinary prescription-only medication supply" policy, antimicrobials could only be administered to food animals by farmers with prescription from registered veterinary surgeons

Key Area 3: Reduce incidence of infection through effective sanitation, hygiene & preventive measures

Conducting farm visits to educate farmers on concept of minimising AMU through disease prevention by good farming / aquaculture practices and enhanced biosecurity measures

 AFCD conducts roughly 2,900 inspections of livestock farms each year, using these visits to educate farmers on AMR and the prudent use of antimicrobials, as well as on overall farm hygiene.

Provision of veterinary services to local farms by non-government veterinary sector

- Under Sustainable Agricultural Development Fund, projects are run by City University of Hong Kong for pig and chicken farms respectively.
- These projects involve formulation of tailor-made farm-specific disease management plans for disease prevention and promoting responsible and prudent use of antimicrobials, and assisting farmers in sourcing vaccines and other veterinary medications.

Key Area 4:

Improve awareness and understanding of antimicrobial resistance through effective communication, education and training (1)

Educational seminar for farmers

Webinar for private veterinarians

RESPONSIBLE
ANTIBIOTICS USE
IN*
SMALL ANOMALS

PRACTICAL AND PRUDENT APPROACHES

WEBINAR
9 MAR 2023 (THU)
7:30PM - 9:45PM
HONG KONG TIME (GMT+8)
For registration, please vivit reversated-amr2023.com

Dr. Trantang
Windy allements
Windy allements
Webinary and Company of the Com

Educational seminars for **farmers** on the **prudent** and **responsible use of antimicrobials** are **held annually**.

Two webinars were held in 2021 and 2023 for private veterinary practitioners.

Key Area 4:

Improve awareness and understanding of antimicrobial resistance through effective communication, education and training (2)

Knowledge, Attitude and Practice(KAP) surveys

- Four KAP surveys were conducted on local livestock farmers since 2018 and the latest one was carried out in 2023. The fifth survey is scheduled for 2026.
- In light of the survey findings, seminars have been/would be convened to address the gaps identified.

Raise awareness via social media

Series of 4 episodes of **animation** about the **AFCD**'s role **in implementing control measures** within the **veterinary sector** to **combat AMR**.

- Fight AMR team Episode 01 (English subtitle) https://youtu.be/0h2lNjaf4vo
- Fight AMR team Episode 02 (English subtitle) https://youtu.be/Xa9oQEWJ4XU
 - Fight AMR team Episode 03 (English subtitle) https://youtu.be/HNFblU14Q_8
- Fight AMR team Episode 04 (English subtitle) https://youtu.be/CZ4OmESPIQ8

An animation to educate pet owners to follow their veterinarian's instruction and complete the full course of treatment.

Message to pet owners - Let's take action against Antimicrobial Resistance, https://youtu.be/yjmAFqNRrAA

Key Area 4:

Improve awareness and understanding of antimicrobial resistance through effective communication, education and training (3)

Joint FB posts (AFCD, Centre for Health Protection, Center for Food Safety) during World AMR Awareness Week (18 to 24 November)

Other ongoing activities

- A series of roving exhibitions at Government Offices have been arranged. Information about AMU/AMR in veterinary sector (including both livestock and small animals) was delivered.
- Mascots, posters, leaflets, public transport advertisement

