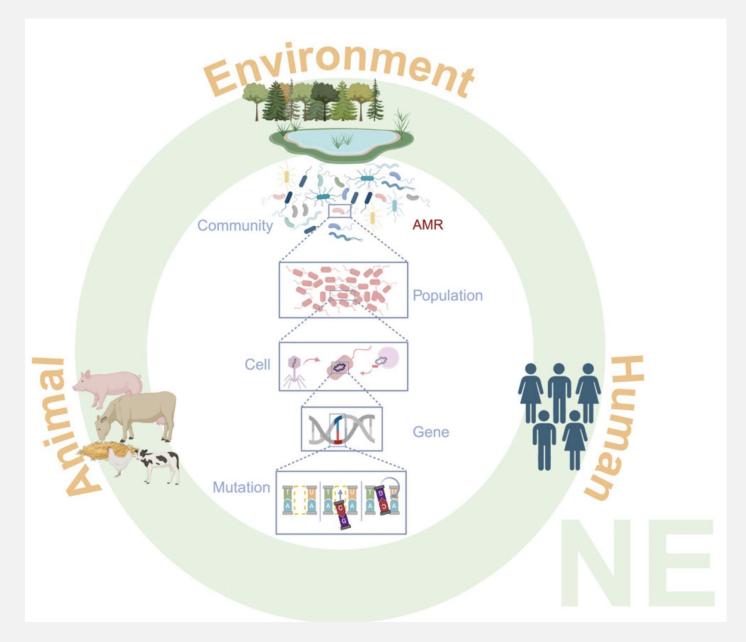


Emerging Antimicrobial Resistance and its Relation with Animal Sources

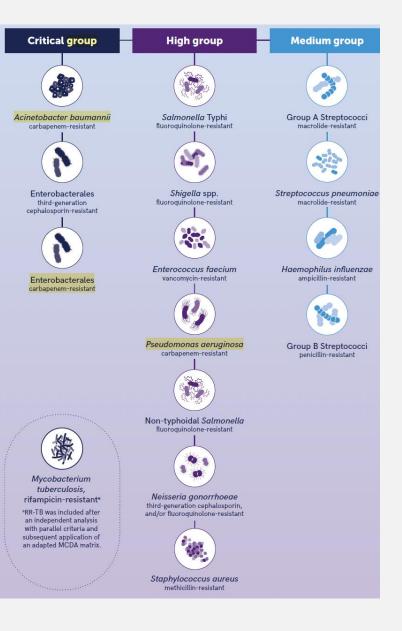
Önder Ergönül, MD, MPH

Koç University School of Medicine Infectious Diseases & Clinical Microbiology


24 October 2025 Hong Kong

Content

- 1. AMR: Clinical Impact, limited treatment options
- 2. Antibiotic Consumption
- 3. Environmental sources (ONE HEALTH)



Bustamante M, et al. An eco-evolutionary perspective on antimicrobial resistance in the context of One Health. iScience. 2024

WHO Global Priority Pathogen List 2024

WHO BPPL 2017 WHO BPPL 2024 Acinetobacter baumannii, Klebsiella pneumoniae, carbapenem-resistant carbapenem-resistant Pseudomonas aeruginosa, Escherichia coli, third-generation carbapenem-resistant cephalosporin-resistant Klebsiella pneumoniae, third-Acinetobacter baumannii. generation cephalosporin-resistant carbapenem-resistant Mycobacterium tuberculosis, Escherichia coli, third-generation cephalosporin-resistant rifampicin-resistant Escherichia coli, Klebsiella pneumoniae, carbapenem-resistant carbapenem-resistant Enterobacter species, third-Klebsiella pneumoniae, thirdgeneration cephalosporin-resistant generation cephalosporin-resistant Serratia species, third-generation Salmonella Typhi, cephalosporin-resistant fluoroquinolone-resistant Proteus species, third-generation Shigella species, cephalosporin-resistant fluoroquinolone-resistant Enterobacter species, Enterococcus faecium, carbapenem-resistant vancomycin-resistant Escherichia coli. Pseudomonas aeruginosa, carbapenem-resistant carbapenem-resistant Non-typhoidal Salmonella, Enterococcus faecium. 11 vancomycin-resistant fluoroquinolone-resistant

WHO global priority pathogens list of antibiotic-resistant bacteria (2024)

Priority 1: CRITICAL

- 1. Enterobacterales, carbapenem-resistant
- 2. Enterobacterales, third generation cephalosporin-resistant
- 3. Acinetobacter baumannii, carbapenem-resistant
- 4. Mycobacterium tuberculosis, rifampicin-resistant

Priority 2: HIGH

- 1. Salmonella Typhi, fluoroquinolone-resistant
- 2. Shigella spp., fluoroquinolone-resistant
- 3. Enterococcus faecium, vancomycin-resistant
- 4. Pseudomonas aeruginosa, carbapenem-resistant
- 5. Non-typhoidal *Salmonella*, fluoroquinolone-resistant
- 6. Neisseria gonorrhoeae, third-generation cephalosporin, and/or fluoroquinolone-resistant
- 7. Staphylococcus aureus, methicillin-resistant

Priority 3: MEDIUM

- 1. Group A Streptococci, macrolide-resistant
- 2. Streptococcus pneumoniae, macrolide-resistant
- 3. Haemophilus influenzae, ampicillin-resistant
- 4. Group B Streptococci, penicillin-resistant

Fig. 5 Klebsiella pneumoniae. Percentage of invasive isolates resistant to carbapenems (imipenem/meropenem), by country, WHO European Region, 2021 **1**% 1% to < 5% 5% to < 10% 10% to < 25% 25% to < 50% ≥ 50% 20 isolates No data Not included in surveillance network Non-visible countries Andorra Liechtenstein Luxembourg ____ Malta Monaco San Marino

Global antibiotic resistance surveillance report 2025

Figure 3. Trends of AMR: median annual change in percentage, 2018–2023

Population-weighted median annual percentage change in AMR between 2018 and 2023, represented by a dot, with 95% CrI. An asterisk (*) indicates a statistically meaningful trend. When trends were available for several infection types, only that with the highest annual percentage change is shown in the figure.

-10

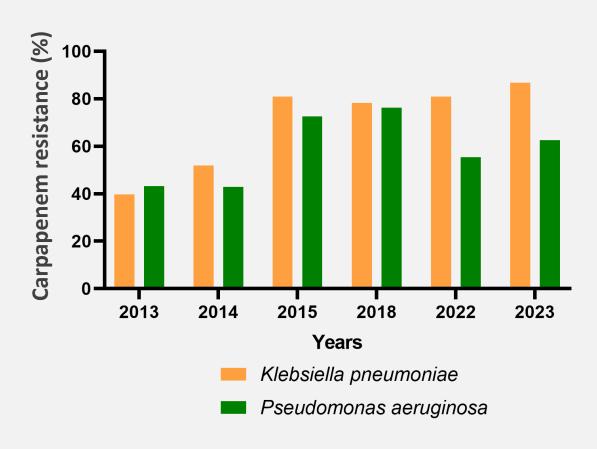
20

Percentage (%) change

10

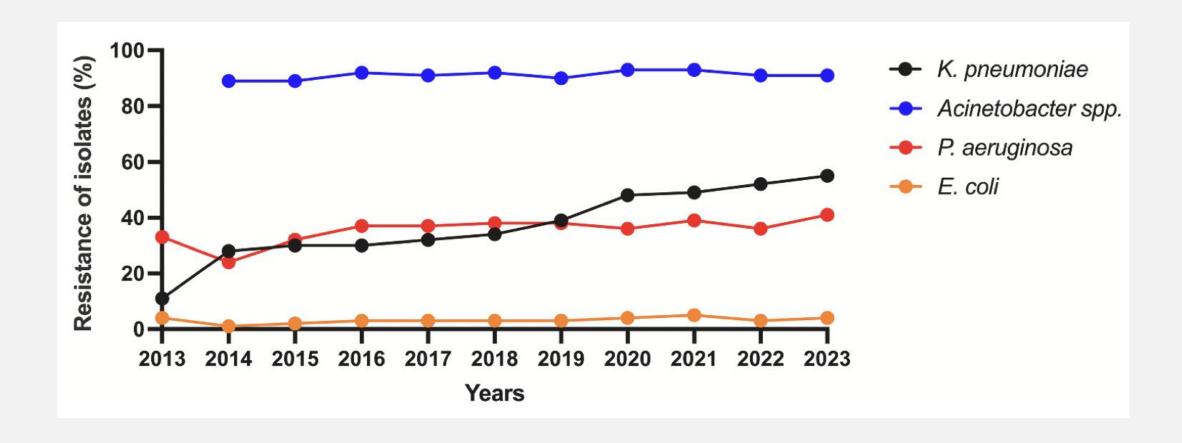
30

40


50

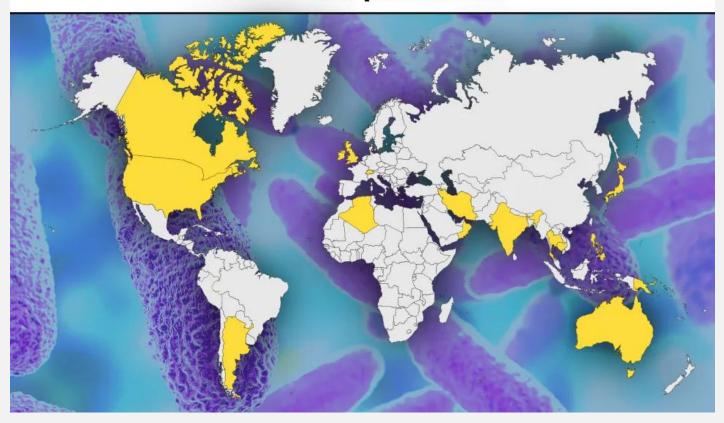
60 70

S. pneumoniae - Penicillin G: -11.0% (-26.8, 7.1)


Carbapenem Resistance in Türkiye

Multicentric studies: Ergonul O, 2016 Aydin M, 2018 Aydin M, 2019

Carbapenem resistance in Türkiye



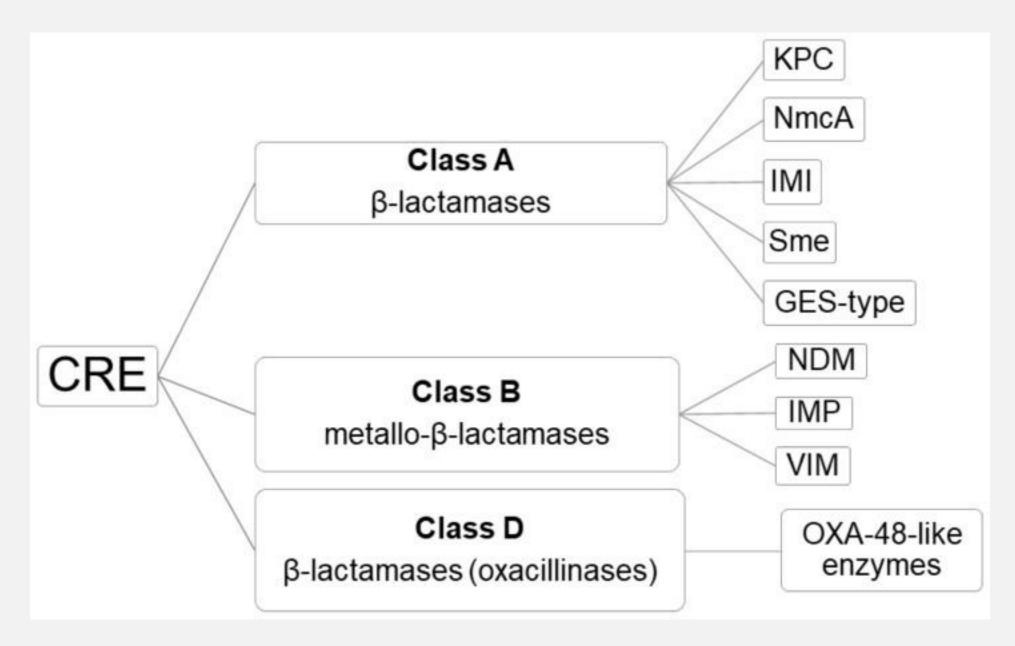
Alhan Ö, Özger HS, Karatuna O, Azap ÖK, Madran B, Keske Ş, Çınar G, Akdemir İ, Ergönül Ö. Antibiotic resistance in Türkiye: what has been done and what needs to be done urgently? Clin Microbiol Infect. 2025

'HYPERVIRULENT' SUPERBUG FOUND IN 16 COUNTRIES

World Health Organization reports new strains of Klebsiella pneumoniae

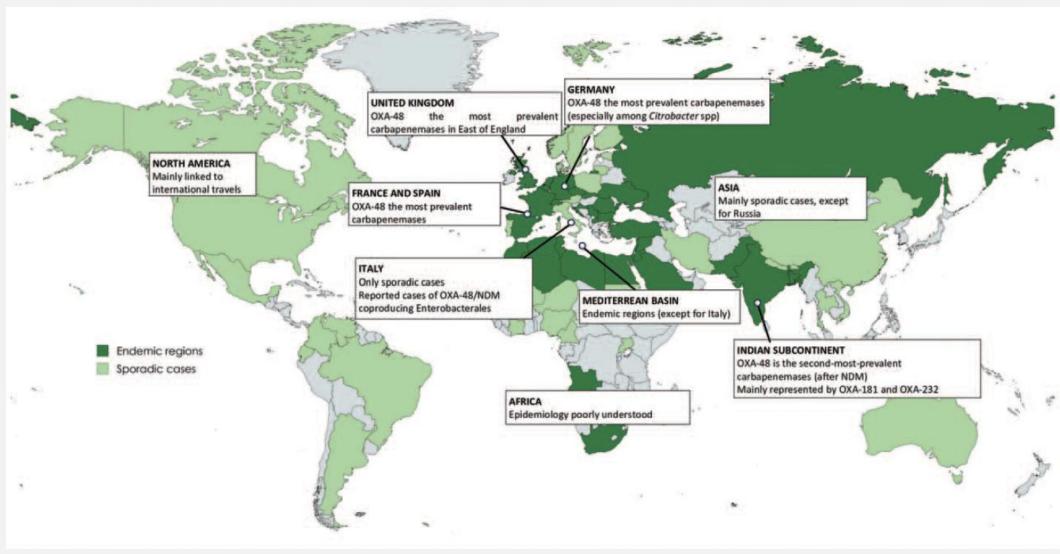
Global Health Concern

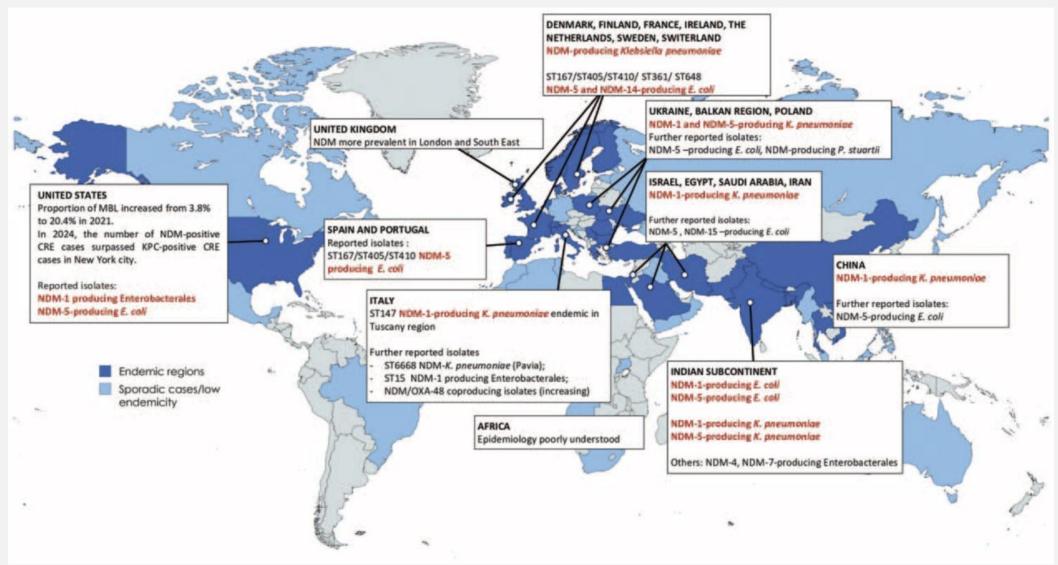
- •The **WHO** has warned of hv-CRKP spreading in **at** least 16 countries.
- •Even previously healthy individuals are at risk, with reports of sudden deaths from community-acquired infections.

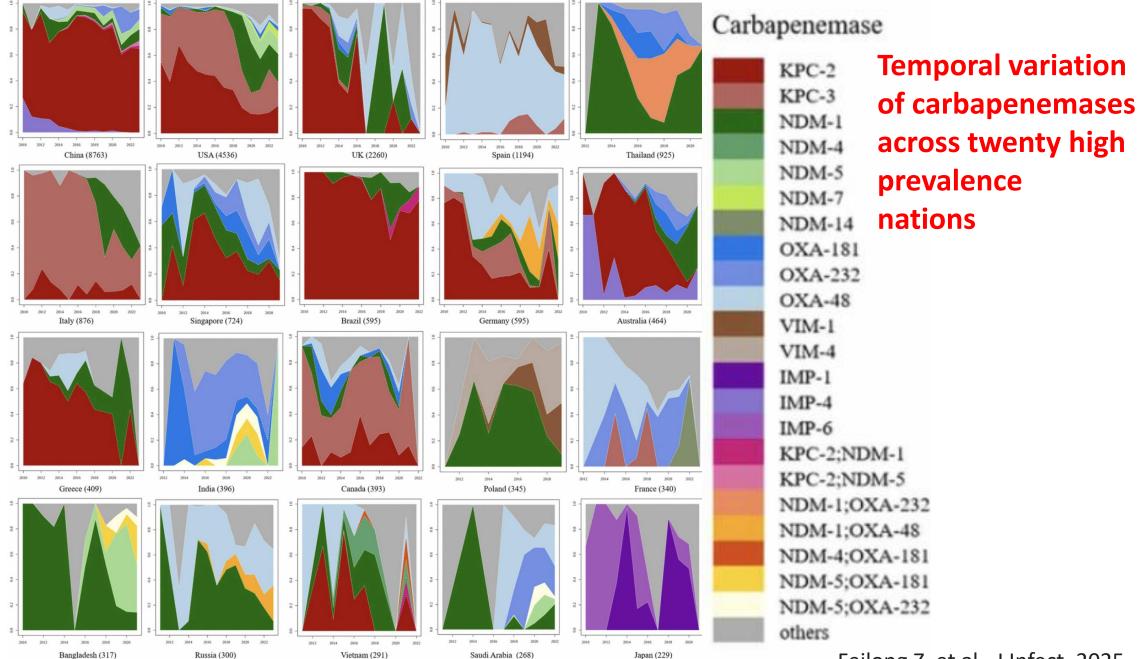

The Nightmare Scenario Dual Threat of Resistance + Virulence

These strains combine:

- Carbapenem resistance (e.g., blaKPC, blaNDM, blaOXA-48)
- Hypervirulence genes (e.g., rmpA, iucA, ybtA)


This makes them both harder to treat and more capable of causing severe, rapidly progressing infections.


Global epidemiology of OXA-48 producing CRE

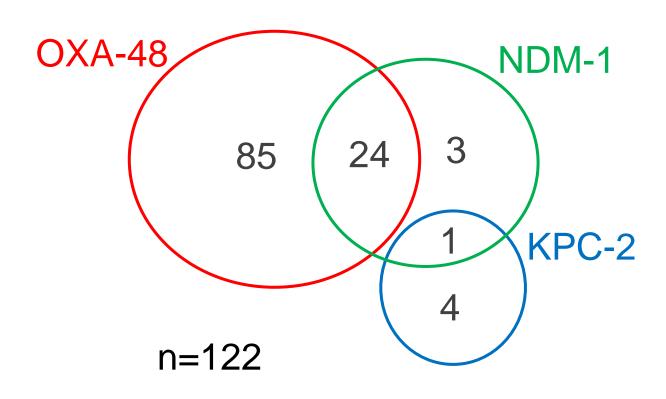

Tiseo G, Galfo V, Falcone M. How I manage patients with New Delhi metallo-beta-lactamase and OXA-48-producing Enterobacterales infections: a practical approach. Curr Opin Infect Dis. 2025

Global epidemiology of NDM-producing CRE

Tiseo G, Galfo V, Falcone M. How I manage patients with New Delhi metallo-beta-lactamase and OXA-48-producing Enterobacterales infections: a practical approach. Curr Opin Infect Dis. 2025

Saudi Arabia (268)

Feilong Z, et al.. J Infect. 2025



Characteristics and outcomes of carbapenemase harbouring carbapenem-resistant *Klebsiella* spp. bloodstream infections: a multicentre prospective cohort study in an OXA-48 endemic setting

Burcu Isler¹ · Berna Özer² · Güle Çınar³ · Abdullah Tarık Aslan⁴ · Cansel Vatansever² · Caitlin Falconer¹ · İştar Dolapçı⁵ · Funda Şimşek⁶ · Necla Tülek⁷ · Hamiyet Demirkaya⁸ · Şirin Menekşe⁹ · Halis Akalin¹⁰ · İlker İnanç Balkan¹¹ · Mehtap Aydın¹² · Elif Tükenmez Tigen¹³ · Safiye Koçulu Demir¹⁴ · Mahir Kapmaz¹⁵ · Şiran Keske^{21,22} · Özlem Doğan² · Çiğdem Arabacı¹⁶ · Serap Yağcı¹⁷ · Gülşen Hazırolan¹⁸ · Veli Oğuzalp Bakır¹⁹ · Mehmet Gönen^{20,21} · Mark D. Chatfield¹ · Brian Forde¹ · Neşe Saltoğlu¹¹ · Alpay Azap³ · Özlem Azap⁸ · Murat Akova⁴ · David L. Paterson¹ · Füsun Can^{2,22} · Önder Ergönül^{21,22}

Received: 3 December 2021 / Accepted: 15 February 2022 © Springer-Verlag GmbH Germany, part of Springer Nature 2022

Carbapenemases (Threat Study) Before Ceftazidim-Avibactam Use in Türkiye

- Prospective observational
- June 2018 June 2019
- 13 center, 187 patients
 - (R veya I: (EUCAST 2018)

	Univariable analysis		Multivariable analysis ^b			
	HR	CI	p	HR	CI	p
Demographics						
Age	0.98	0.86-1.13	0.82			
Male sex	1.34	0.82 - 2.20	0.24			
Source						
Non-UT source	2.25	0.90 - 5.60	0.08	1.34	0.52 - 3.46	0.54
Source control	0.60	0.34-1.04	0.07	0.69	0.39 - 1.23	0.21
Comorbidities						
Metastatic/hematologic malignancy	1.27	0.73 - 2.20	0.40			
Immunosuppression	1.43	0.83 - 2.46	0.20	2.14	1.15-4.00	0.02
CCI score	0.97	0.88 - 1.07	0.56			
Disease severity						
ICU at presentation	1.82	1.05-3.16	0.03	0.88	0.41-1.93	0.76
Invasive mechanical ventilation	1.99	1.22-3.25	0.01	1.18	0.58 - 2.40	0.65
SOFA score (per unit)	1.25	1.17-1.33	0.00	1.24	1.15-1.34	0.000
Microorganism						
Carbapenemase other than single OXA-48-like ^a	1.33	0.78–2.26	0.30			
MLST type (reference other)						
ST2096	2.47	1.25-4.86	0.01	1.94	0.95-3.96	0.07
ST101	1.92	0.88-4.22	0.10	1.92	0.84-4.38	0.12
ST14	2.91	1.33-6.36	0.01	1.96	0.88-4.44	0.10
Treatment						
Active treatment	0.75	0.46-1.22	0.25	0.71	0.42 - 1.21	0.21

 $[^]a$ OXA-48/MBL (n=29), MBL (n=11), KPC (n=4), KPC/MBL (n=2), b excludes those who died within 48 h. p value < 0.2 in bold

13 centers, 187 patients.

OXA-48 like 75% OXA-48 like/NDM 16%.

30-day mortalite: %44

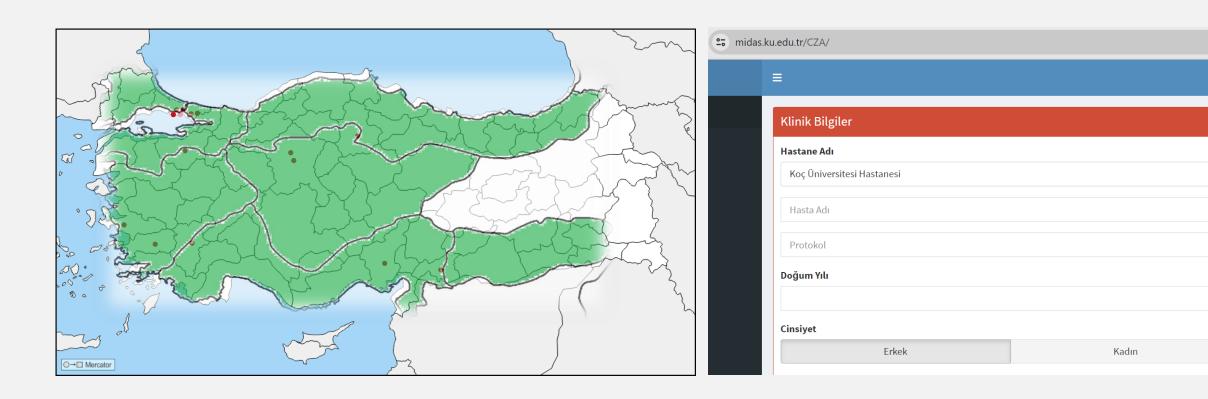
All OXA-48-like CZA susceptible

İsler B, et al. Eur J Clin Microbiol Infect 2022

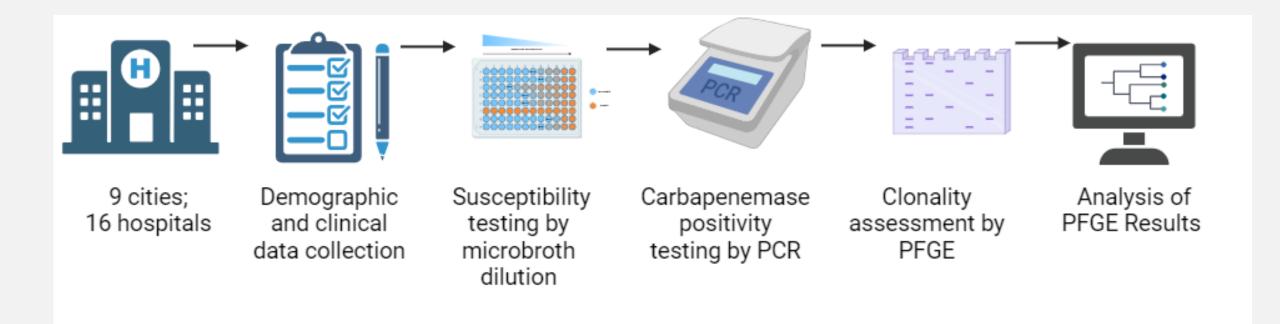
Susceptibility (susceptible/total tested)	Total, <i>n</i> (%)	ST2096, n (%)	ST101, n (%)	ST14, n (%)
Colistin	43/187 (23)	11/61 (18)	5/37 (14)	10/28 (36)
Tigecycline	67/157 (43)	12/51 (24)	24/33 (73)	8/26 (31)
Amikacin	45/177 (25)	7/59 (12)	7/32 (22)	5/27 (19)
Gentamicin	42/164 (26)	7/59 (12)	11/26 (42)	3/26 (12)
Trimethoprim-sulfamethoxazole	20/165 (12)	1/60 (2)	6/26 (23)	1/25 (4)
Ceftazidime-avibactam	152/187 (81)	61/61 (100)	37/37 (100)	9/28 (32)

Isler B, Özer B, Çınar G, Aslan AT, Vatansever C, Falconer C, Dolapçı İ, Şimşek F, Tülek N, Demirkaya H, Menekşe Ş, Akalin H, Balkan İİ, Aydın M, Tigen ET, Demir SK, Kapmaz M, Keske Ş, Doğan Ö, Arabacı Ç, Yağcı S, Hazırolan G, Bakır VO, Gönen M, Chatfield MD, Forde B, Saltoğlu N, Azap A, Azap Ö, Akova M, Paterson DL, Can F, Ergönül Ö.

Characteristics and outcomes of carbapenemase harbouring carbapenem-resistant Klebsiella spp. bloodstream infections: a multicentre prospective cohort study in an OXA-48 endemic setting.


Eur J Clin Microbiol Infect Dis. 2022

Carbapenem Resistant Klebsiella pneumonia (BSI and/or Pneumonia) KAPSAR Study

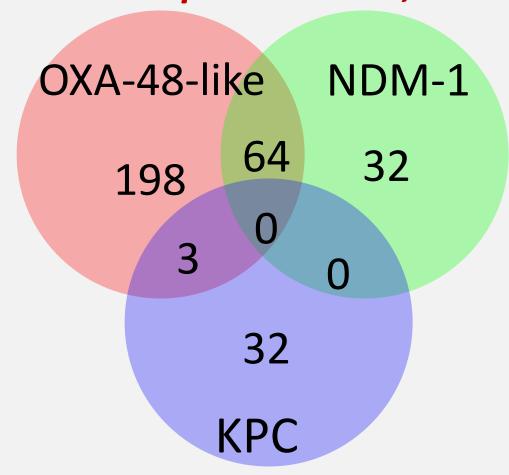

- Prospective cohort, 16 centers
- Hospitalized adults (≥18 years old)

- 1 Jan 2022 1 Nov 2023
- Digital database (midas)

Method

Klebsiella pneumoniae to 30-day mortality (n=655, CFR=47%) KAPSAR Study

	Fatal (%)	Survived (%)	p-value
	n=310	n=345	
Demographics			
Male Gender	194 (62.6)	225 (65.2)	0.483
Median Age [IQR]	<mark>70 [60-79]</mark>	<mark>66 [56-74]</mark>	<0.00 <mark>1</mark>
Age>60	<mark>273 (58)</mark>		
Comorbidities			
Solid Organ Malignancy	96 (31.0)	107 (31.0)	0.990
Hematologic Malignancy	26 (8.4)	35 (10.1)	0.440
Diabetes Mellitus Type II	85 (27.4)	86 (24.9)	0.468
Chronic Kidney Disease	45 (14.5)	52 (15.1)	0.841
Congestive Heart Failure	37 (11.9)	29 (8.4)	0.134
Chronic Liver Disease	27 (8.7)	17 (4.9)	0.054
COPD	28 (9.0)	33 (9.6)	0.815
COVID-19	20 (6.5)	19 (5.5)	0.610



Distribution of Betalactamases

	CR-Kp
	n=427 (%)
OXA-48	275 (65)
NDM	110 (25)
KPC	35 (8)
OXA-48 and NDM	64 (15)
OXA-48 and KPC	3 (<1)
NDM and KPC	0

Molecular Features of Carbapenem Resistant Klebsiella pneumoniae, n=427

Antibiotic resistance rates in carbapenem-resistant Klebsiella pneumoniae infections, KAPSAR study

Antibiotic	Carbapenem Resistant Samples (%) n=427	Carbapenem Resistant NDM Negative Samples (%) n=317
Piperacillin-	418 (97.89)	-
tazobactam		
Ceftolozane-	409 (95.78)	_
tazobactam		
Ceftazidime-	<mark>181 (42.39)</mark>	<mark>95 (29.96)</mark>
avibactam		
Colistin	152 (35.60)	-

Resistance and the Impact on 30 day Fatality among Kp

Multivariate analysis	n=635 (%)	OR (confidence interval)
Carbapenem resistance	476 (75)	4 (2.7-6)
Age>70	297 (45)	2.3 (1.7-3.3)

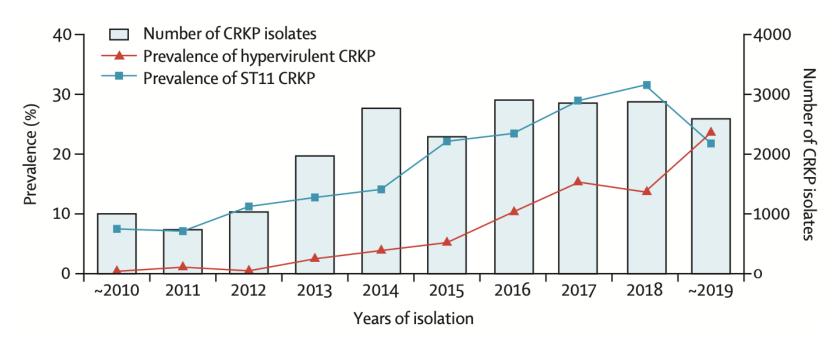
Resistance and the Impact on 30 day Fatality among CR-Kp

Multivariate analysis	n=427	
CZA resistance	181 (42)	1.7 (1.09-2.6)
Age>70	221 (46)	2.4 (1.59-3.61)
Hypervirulent Kp	<mark>121 (29)</mark>	<mark>0.86 (0.54-1.39)</mark>

Hypervirulence is based on hypermucoviscosity(rmpA/rmpA2) and aerobactin (iutA/iucA)

WHO Report; July 2024

Global Risk Assessment: CR-hvKp

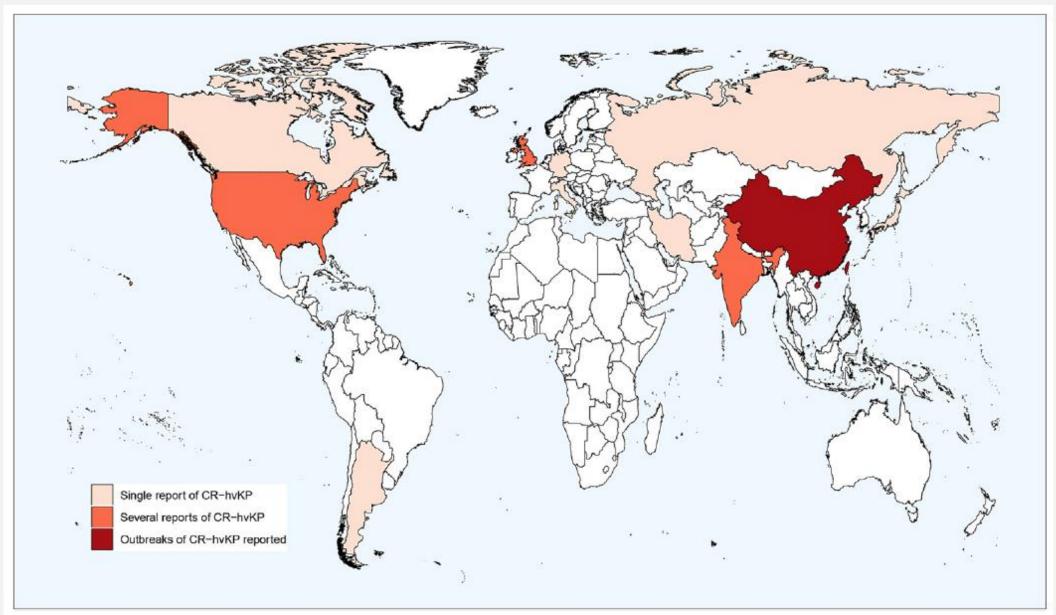

△ Risk Level: Moderate

The global risk from CR-hvKp is considered moderate, based on current data, trends, and system capacities.

Clinical and Epidemiological Concerns

- Traditionally community-acquired in Asia, hvKp causes high morbidity and mortality.
- •Recently detected in health-care settings across Europe and Asia (e.g., China), raising concern about nosocomial transmission.
- •The concurrence of hypervirulence + antimicrobial resistance increases potential for both community and hospital outbreaks.

Global evolution and geographic diversity of hypervirulent carbapenem-resistant *Klebsiella pneumoniae*



21 016 strains of CRKP from the National Center for Biotechnology Information GenBank database, including 697 complete genome sequences and 20 319 draft genome sequences, from 1980 to 2022 in 105 countries.

We found that carriage of genes specific to hypervirulent K pneumoniae was prevalent among CRKP strains (0·40–27·03%). Worldwide, 51·68% of CRKP strains have yersiniabactin genes, which are the virulence genes with the highest frequency. The proportion of CRKP harbouring yersiniabactin and aerobactin genes has increased significantly over the past two decades, with yersiniabactin genes increasing from 24·58% to 49·89% and aerobactin genes from 0·50% to 31·43%.

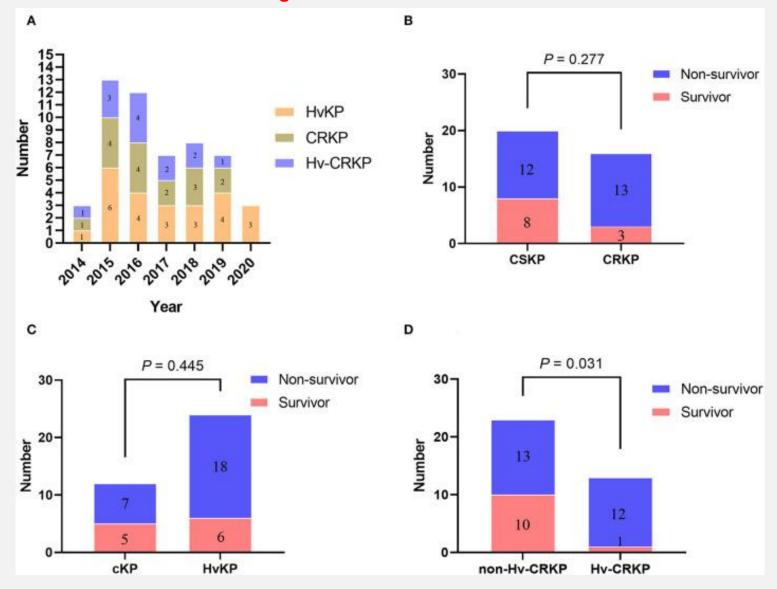
Wu Y, et al Lancet ID 2022

Global distribution of hypervirulent and carbapenem-resistant Klebsiella pneumoniae (CR-hvKP)

Higher Mortality Rates

Meta-analysis (2025): hv-CRKP infections show a pooled mortality rate of ~28%

Qala Nou, et al. Systematic review and meta-analysis on the carbapenem-resistant hypervirulent *Klebsiella pneumoniae* isolates. *BMC Pharmacol Toxicol* 2025.


Severe Outcomes in Specific Infections

Meningitis study in China: hv-CRKP meningitis had a **92.3% mortality rate**, much higher than 56.5% for non-hypervirulent cases.

ICU outbreak report: hv-CRKP caused a **100% fatality** rate in 8 ICU patients during a localized outbreak.

Hypervirulent carbapenem-resistant *Klebsiella pneumoniae* causing highly fatal meningitis in southeastern China.

Is Hypervirulent Klebsiella pneumoniae more Fatal?

Hypervirulent *Klebsiella pneumoniae* have better clinical outcomes than classical *Klebsiella pneumoniae* for lower respiratory tract infection patients.

Zhuo, X., Lei, Z., Pu, D. *et al. BMC Microbiol* **25**, 40 (2025)

Statistically no difference

Clinical Characterization, Risk Factors, and Mortality in Patients with Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae Intra-Abdominal Infections.

Qiu M, et al. Infection and Drug Resistance 2025

Genomically defined hypervirulent *Klebsiella pneumoniae*contributed to early-onset increased mortality. Tang, Y., Du, P., Du, C. *et al. Nat Commun* **16**, 2096 (2025)

Hypervirulent *Klebsiella pneumoniae* (hvKp) can cause severe infections

Liver or non-hepatic abscess
Pneumonia
Endophthalmitis
Meningitis
Necrotizing fasciitis

Namikawa H, Oinuma KI, Yamada K, Kaneko Y, Kakeya H, Shuto T. Predictors of hypervirulent Klebsiella pneumoniae infections: a systematic review and meta-analysis. J Hosp Infect. 2023

Characteristics of the studies included in the systematic review and meta-analysis

First author (year)	Country	Design	Period	Population	Infection type	Hypervirulence factor	HvKp
Li (2014) [12]	China	Retrospective observational study	2010—2012	88 patients with K. pneumoniae infection	BSIs, pneumonia, UTI, others	HMV phenotype	29 (33.0%)
Zhang (2016) [13]	China	Prospective observational study	2013	230 patients with K. pneumoniae infection	BSIs, HAP, others	Aerobactin	87 (37.8%)
Yu (2017) [15]	Taiwan	Retrospective observational study	2009—2010	48 patients with ESBL-Kp infection	BSIs	K1/K2, HMV phenotype rmpA, or rmpA2,	19 (39.6%)
Li (2018) [9]	China	Retrospective cohort study	2015—2016	143 patients with K. pneumoniae infection	BSIs	rmpA and iucA	35 (24.5%)
Liu (2018) [16]	China	Retrospective observational study	2008-2017	202 patients with K. pneumoniae infection	BSIs, pneumonia, UTI, others	Aerobactin	96 (47.5%)
Liu (2018) [14]	China	Retrospective cohort study	2008-2017	73 patients with K. pneumoniae infection	VAP	Aerobactin	34 (46.6%)
Liu (2019) [17]	China	Retrospective observational study	2008-2014	175 patients with K. pneumoniae infection	BSIs, HAP, UTI, HMV phenotype and others	Aerobactin	80 (45.7%)
Yang (2020) [23]	China	Observational study	2015	113 patients with K. pneumoniae infection	Pneumonia, UTI, others	HMV phenotype, rmpA, rmpA2, iucA, iroB, peg- 344, and peg-589	59 (52.2%)
Liu (2020) [20]	China	Retrospective cohort study	2008-2018	117 patients with nosocomial <i>K. pneumoniae</i> infection	BSIs, pneumonia, UTI, others	rmpA, rmpA2, iucA, iroB, and peg-344	53 (45.3%)
Ding (2022) [19]	China	Retrospective observational study	2016—2018	123 patients with K. pneumoniae infection	BSIs, pneumonia, others	Aerobactin and Galleria mellonella infection model	53 (43.1%)
Wei (2022) [24]	China	Retrospective observational study	2020	80 patients with carbapenem-resistant	BSIs, pneumonia, UTI, others	rmpA, rmpA2, iucA, iroN, or peg-344	51 (63.8%)

Namikawa H, Oinuma KI, Yamada K, Kaneko Y, Kakeya H, Shuto T. Predictors of hypervirulent Klebsiella pneumoniae infections: a systematic review and meta-analysis. J Hosp Infect. 2023

Call for prudent use of the term hypervirulence in carbapenem-resistant Klebsiella pneumoniae

In July, 2024, WHO issued a global alert regarding the increasing incidence of hypervirulent *Klebsiella pneumoniae* (hvKP) sequence type (ST) 23, which carry genes encoding carbapenemases that confer hvKP with resistance to the vast majority of clinically available β-lactams. ST23 *K pneumoniae* is a well known hypervirulent lineage and can acquire carbapenemase genes.

The term hypervirulence should be used more prudently when applied to CRKP strains, until providing easy and reproducible evidence of a hypervirulent phenotype is possible. If hypervirulence is to be used in reporting cases or studies, then attributed clinical evidence or data, or both, of murine or equivalent mammalian infection models should be provided for verification

Yang Y, McNally A, Zong Z. Call for prudent use of the term hypervirulence in carbapenem-resistant Klebsiella pneumoniae. Lancet Microbe. 2025 May;6(5):101090

Country 20 (8 Australia 20 (8 Malaysia 75 (3 Singapore 40 (1 Taiwan 38 (1 Thailand 50 (2 Türkiye 27 (1 Charlson Comorbidity Score†‡ 5 (3	5) 61 (16)	
Female 108 (4) Male 142 (5) BMI, kg/m²† 23 (2) Country 20 (8) Malaysia 75 (3) Singapore 40 (1) Taiwan 38 (1) Thailand 50 (2) Türkiye 27 (1) Charlson Comorbidity Score†‡ 5 (3)		
Male 142 (5) BMI, kg/m²† 23 (2) Country 20 (8) Malaysia 75 (3) Singapore 40 (1) Taiwan 38 (1) Thailand 50 (2) Türkiye 27 (1) Charlson Comorbidity Score†‡ 5 (3)		
BMI, kg/m²† 23 (2 Country 20 (8 Malaysia 75 (3 Singapore 40 (1 Taiwan 38 (1 Thailand 50 (2 Türkiye 27 (1 Charlson Comorbidity Score†‡ 5 (3	3%) 102 (40%	6)
Country Australia 20 (8 Malaysia 75 (3 Singapore 40 (1 Taiwan 38 (1 Thailand 50 (2 Türkiye 27 (1 Charlson Comorbidity Score†‡ 5 (3	7%) 152 (60%	6)
Australia 20 (8) Malaysia 75 (3) Singapore 40 (1) Taiwan 38 (1) Thailand 50 (2) Türkiye 27 (1) Charlson Comorbidity Score†‡ 5 (3)	1–27) 24 (21–	27)
Malaysia 75 (3) Singapore 40 (1) Taiwan 38 (1) Thailand 50 (2) Türkiye 27 (1) Charlson Comorbidity Score†‡ 5 (3)		
Singapore 40 (1 Taiwan 38 (1 Thailand 50 (2 Türkiye 27 (1 Charlson Comorbidity Score†‡ 5 (3	%) 20 (8%))
Taiwan 38 (1 Thailand 50 (2 Türkiye 27 (1 Charlson Comorbidity Score†‡ 5 (3	0%) 62 (24%	6)
Thailand 50 (2 Türkiye 27 (1 Charlson Comorbidity Score†‡ 5 (3	6%) 30 (12%	6)
Türkiye 27 (1 Charlson Comorbidity Score†‡ 5 (3	5%) 55 (22%	6)
Charlson Comorbidity Score†‡ 5 (3	0%) 59 (23%	6)
,	1%) 28 (11%	5)
	-7) 5 (3 -7))
Comorbidity		
Congestive heart failure 12 (5	%) 21 (8%))
Chronic pulmonary disease 14 (6	%) 17 (7%)	
Diabetes 91 (3	6%) 112 (44%	6)
Moderate or severe renal disease 69 (2	8%) 76 (30%	6)
Moderate or severe liver disease 19 (8	%) 18 (7%)	
Solid tumour 71 (2	8%) 66 (26%	6)
Haematological malignancy 60 (2	4%) 48 (19%	6)
AIDS 3 (1	%) 4 (2%)	
Immunosuppression§ 152 (6	1%) 147 (58%	6)
Neutropenia¶ 48 (1	9%) 42 (17%	5)
Acquisition of bloodstream infection		
Hospital-acquired 156 (6	20() 152 (600	4)
Health care-associated 94 (3	2%) 153 (60%	0)

	Cefiderocol (N=250)	Standard of care (N=254)
(Continued from previous column)		
Organisms in index blood culture		
Escherichia coli	90 (36%)	77 (30%)
Klebsiella pneumoniae	73 (29%)	80 (31%)
Enterobacter spp	19 (8%)	21 (8%)
Other Enterobacterales spp	26 (10%)	33 (13%)
Pseudomonas spp**	27 (11%)	24 (9%)
Acinetobacter spp††	18 (7%)	25 (10%)
Stenotrophomonas maltophilia	5 (2%)	3 (1%)
Aeromonas spp	7 (3%)	3 (1%)
Miscellaneous non-fermenter	8 (3%)	7 (3%)
Other species	1 (<1%)	2 (1%)
Antimicrobial-resistant organisms		
Third-generation cephalosporin- resistant Enterobacterales spp	66 (26%)	72 (28%)
Carbapenem-resistant Enterobacterales spp	32 (13%)	32 (13%)
Cefiderocol-resistant Enterobacterales spp	12 (5%)	10 (4%)
KPC-producing Enterobacterales spp	1 (<1%)	3 (1%)
OXA-48-like-producing Enterobacterales spp	11 (4%)	15 (6%)
MBL-producing Enterobacterales spp	16 (6%)	11 (4%)
Carbapenem-resistant Acinetobacter spp	11 (4%)	14 (6%)
Cefiderocol-resistant Acinetobacter spp	2 (1%)	0 (0)
Carbapenem-resistant Pseudomonas spp‡‡	8 (3%)	8 (3%)
Cefiderocol-resistant Pseudomonas spp	2 (1%)	0 (0)
Carbapenem-resistant Gram-negative bacilli	64 (26%)	63 (25%)

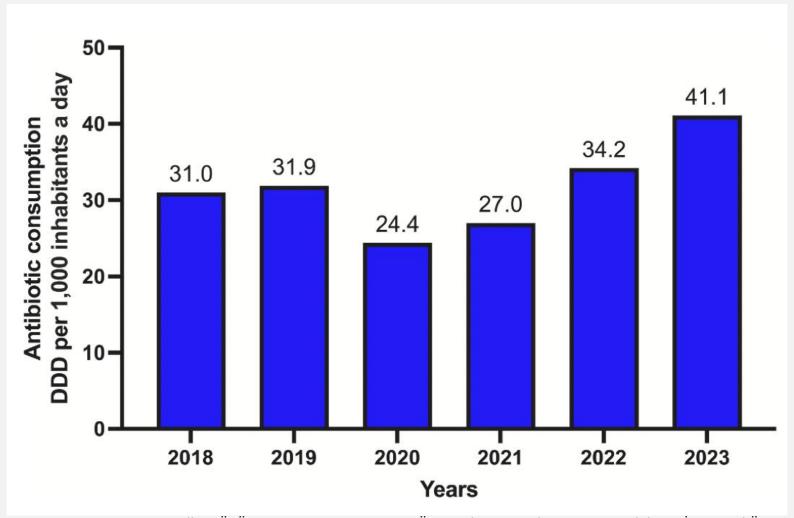
Cefiderocol versus standard therapy for hospital-acquired and health-careassociated Gramnegative bacterial bloodstream infection (GAME CHANGER): an open-label, parallelgroup, randomised trial

Cefiderocol versus standard therapy for hospital-acquired and health-care-associated Gram-negative bacterial bloodstream infection (the GAME CHANGER trial): an openlabel, parallel-group, randomised trial

David L Paterson, Helmi Sulaiman, Po-Yu Liu, Mark D Chatfield, Mesut Yilmaz, Zeti Norfidiyati Salmuna, Mohd Zulfakar Mazlan, Siriluck Anunnatsiri, Rujipas Sirijatuphat, Darunee Chotiprasitsakul, David C Lye, Jyoti Somani, Shirin Kalimuddin, Abdullah T Aslan, Visanu Thamlikitkul, Yi-Tzu Lee, Ya-Sung Yang, Yi-Tsung Lin, Wan Nurliyana Wan Ramli, Chien-Hao Tseng, Sophia Archuleta, Yvonne Fu Zi Chan, Brian M Forde, Hugh Wright, Adam G Stewart, Kay A Ramsay, Weiping Ling, Vicki Rossi, Tiffany M Harris-Brown, Patrick N A Harris, on behalf of the GAME CHANGER Trial Investigators*

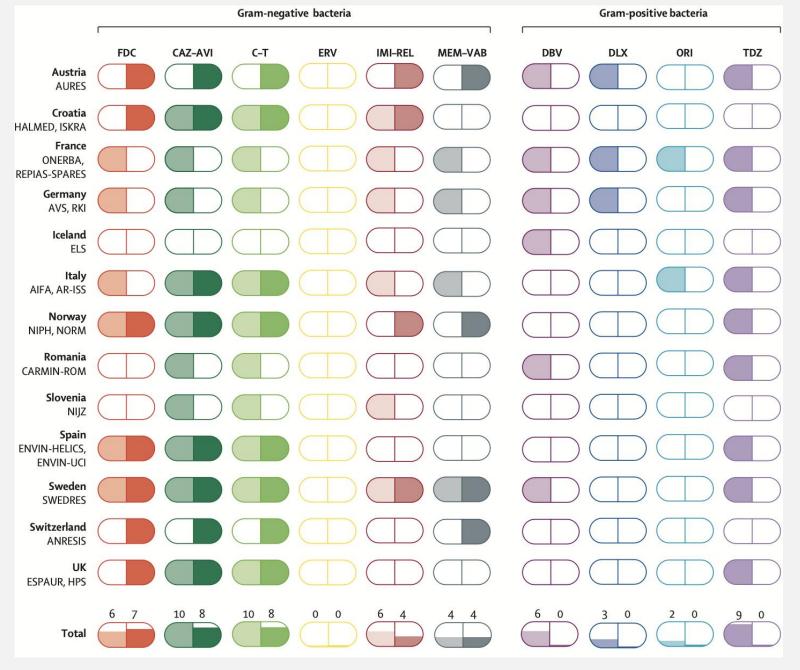
Among patients with a hospital-acquired or health-care-associated Gram-negative bloodstream infection, cefiderocol resulted in non-inferior 14-day mortality compared with standard of care.

In both the main analysis population and the carbapenem-resistant subset, cefiderocol was not superior to standardof care. This evidence suggests that cefiderocol is efficacious in patients with health-care-associated Gram-negative bloodstream infection who are at high risk of antibiotic resistance, but more evidence is required to define its efficacy when carbapenem-resistant organisms are the cause.

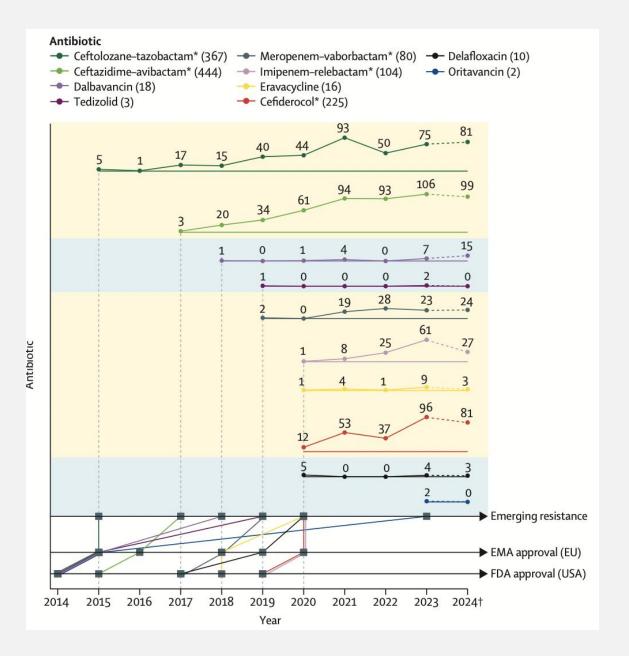


Current Treatment Choices for MBL Enterobacterales

	ESBL	Amp C	Ambler A KPC & IMI	MBL NDM, VIM, IMP	Ambler D OXA-48
CZA					
Aztreonam Avibactam					
Cefiderecol					
Meropenem-vaborbactam					
Imipenem-relebactam					
Ceftolozane-tazobactam					
Sulbactam-durlobactam					



Antibiotic Consumption in Türkiye


Alhan Ö, Özger HS, Karatuna O, Azap ÖK, Madran B, Keske Ş, Çınar G, Akdemir İ, Ergönül Ö. Antibiotic resistance in Türkiye: what has been done and what needs to be done urgently? Clin Microbiol Infect. 2025

Garlasco J, Arieti F, Morra M, Tebon M, Ortiz D, Pezzani MD, Odoj K, Manco F, Cassini A, Harbarth S, Presterl E, Carevic B, Kahlmeter G, Thursky K, Morelli P, Hagel S, Savoldi A, Tacconelli E. The Emerging Resistance Index: tracking early resistance to new antibiotics.
Lancet Infect Dis 2025

Garlasco J, Arieti F, Morra M, Tebon M, Ortiz D, Pezzani MD, Odoj K, Manco F, Cassini A, Harbarth S, Presterl E, Carevic B, Kahlmeter G, Thursky K, Morelli P, Hagel S, Savoldi A, Tacconelli E. The Emerging Resistance Index: tracking early resistance to new antibiotics.
Lancet Infect Dis 2025

The Emerging Resistance Index: tracking early resistance to new antibiotics

Jacopo Garlasco*, Fabiana Arieti*, Matteo Morra, Maela Tebon, Diego Ortiz, Maria Diletta Pezzani, Karin Odoj, Federica Manco, Alessandro Cassini, Stephan Harbarth, Elisabeth Presterl, Biljana Carevic, Gunnar Kahlmeter, Karin Thursky, Paola Morelli, Stefan Hagel, Alessia Savoldi*, Evelina Tacconelli*

	a,	\mathbf{k}_{i}	\mathbf{A}_{i}	B_{i}	C_{i}	ERI numerator	D_i	E,	ERI denominator	ERI	ERI tier
Imipenem-relebactam	0.239	1.153	3.246	0	1.000	3.469	0.125	0.052	0.444	7.8	Very high
Cefiderocol	0.153	1.076	4.481	0	1.250	3.240	0.115	0.094	0.478	6.8	Very high
Ceftolozane-tazobactam	0.223	0.943	2.384	0	0.444	1.928	0.184	0.086	0.538	3.6	High
Meropenem-vaborbactam	0.187	1.156	1.896	1	0.667	1.098	0.050	0.038	0.328	3.3	High
Ceftazidime-avibactam	0.179	1.044	3.745	1	1.250	1.796	0.196	0.121	0.581	3.1	High
Eravacycline	0.324	1.044	0.590	2	0.000	0.406	0.000	0.000	0.141	2.9	Medium
Delafloxacin	0.359	1.127	0.000	1	0.000	0.577	0.031	0.000	0.226	2.5	Medium
Dalbavancin	0.131	1.163	1.221	3	0.000	0.231	0.105	0.000	0.354	0.7	Low
Tedizolid	0.102	1.000	0.493	4	0.000	0.117	0.156	0.000	0.420	0.3	Low
Oritavancin	0.002	1.000	-2.885	8	0.000	0.001	0.012	0.000	0.178	0.0	Low

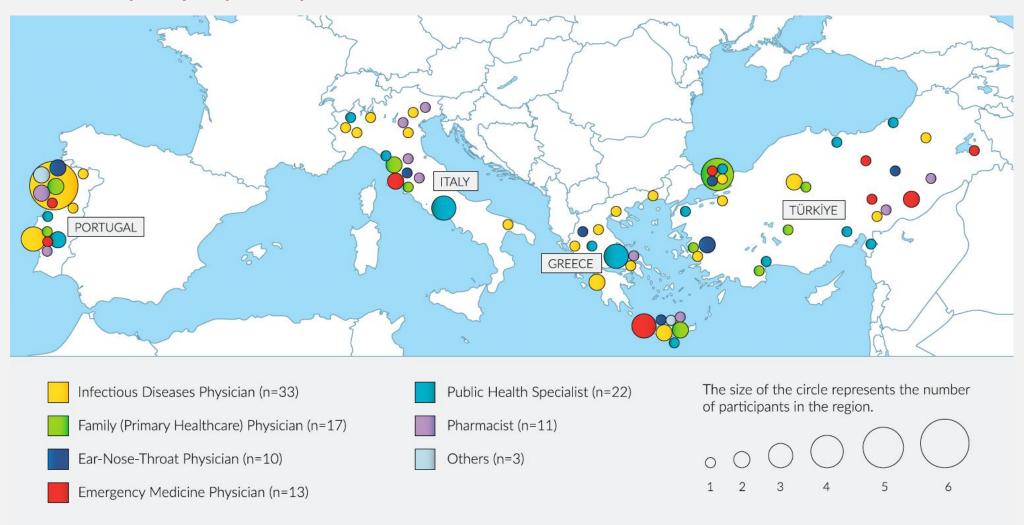
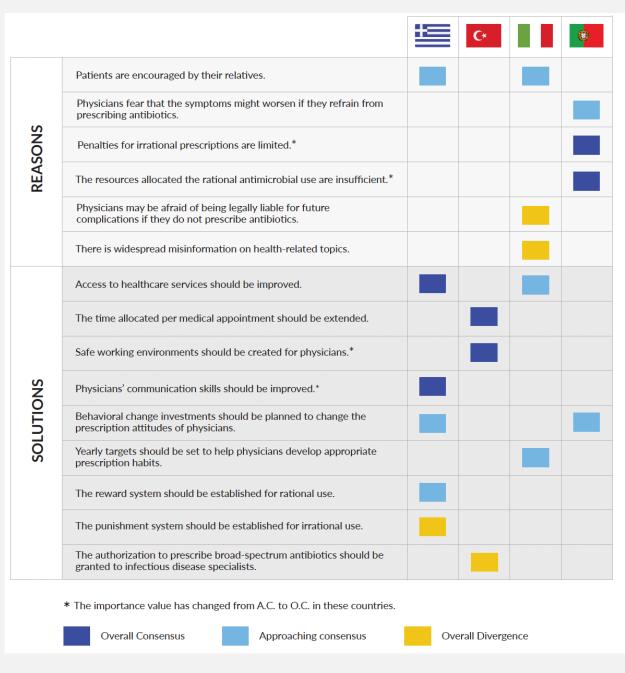

Target antibiotics are listed in descending order of ERI score. The parameters were: a_i (pooled prevalence of resistance), k_i (trend of prevalence of resistance), A_i (trend in yearly publication reporting resistance), B_i (time lag between approval and report of resistance), C_i (average number of outbreaks), D_i (availability of surveillance systems monitoring antibiotic consumption), and E_i (availability of surveillance systems assessing resistance rates). The ERI numerator indicates the summary measure of the emerging resistance potential (in the form of exponential of the linear combination of A_i , B_i , and C_i , as described in the Methods section), while the ERI denominator represents the status of surveillance of antimicrobial consumption and resistance (in the form of square root of the linear combination of D_i and E_i). ERI=Emerging Resistance Index.

Table: ERI parameters, value, and tier by antibiotic or antibiotic combination

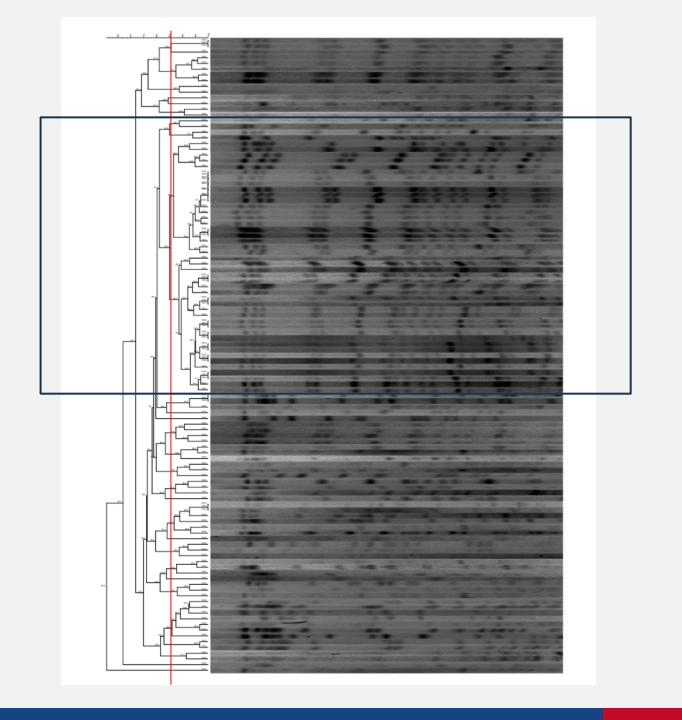
Determinants of antibiotics misuse and overuse in High-Risk Countries in the European Region: A Multidisciplinary Delphi Study



Bahar Madran, Önder Ergönül, Sibel Sakarya ve ark. (submitted)

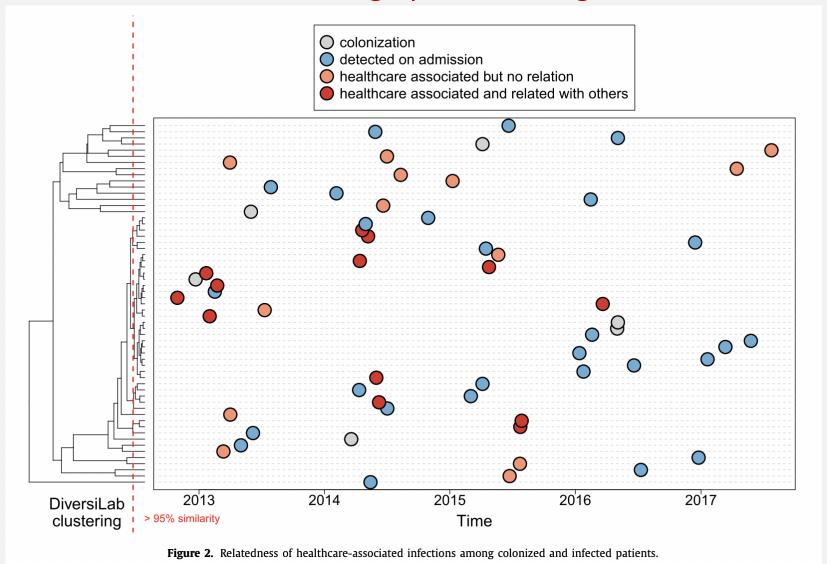
Determinants of antibiotics misuse and overuse in High-Risk Countries in the European Region:
A Multidisciplinary Delphi Study

Bahar Madran, Önder Ergönül, Sibel Sakarya ve ark. (submitted)


Significance of Outbreaks

Ceftazidim-Avibaktam Resistant *K. pneumoniae*

PFGE results


- 8 centers: NDM-1 negative 110 samples
- ≥85% similarity index

Gücer L, et al. Unpublished results

Elimination of healthcare-associated Acinetobacter baumannii infection in a highly endemic region

WHO 2024: Surveillance and Laboratory Limitations

Global gaps in:

- Laboratory capacity for molecular diagnostics
- Routine surveillance of hvKp?
 - Is it necessary?
- Systematic reporting and case documentation

Most affected regions lack reliable diagnostics, limiting sensitivity of detection and surveillance coverage.

WHO 2024 Report: Key Challenges and Recommendations

⚠ Key Challenges

- •Lack of data on:
 - Prevalence and transmission scale
 - Hospitalizations and community-level burden
 - Impact on healthcare systems
- •Uncertainty in surveillance data leads to moderate confidence in risk estimates.
- Recommendations
- •Strengthen infection prevention and control (IPC) in hospitals.
- •Improve molecular diagnostic access.
- •Enhance global surveillance systems for real-time tracking.
- •Promote international cooperation to monitor and contain spread.

The Effect of Environment: Association or Causality?

Evidence Type	Example Findings	Strength
Molecular (genomic linkage)	Identical resistance genes and plasmids (e.g., blaCTX-M-15, mcr-1) found in E. coli from poultry meat and humans	Strong (causal linkage plausible)
Ecological (policy natural experiments)	AMR decline in humans after animal antibiotic restrictions (e.g., avoparcin ban in EU reducing <i>VRE</i>)	Strong population-level evidence
Epidemiologic (correlation)	Regions with high farm antibiotic use show higher AMR prevalence in human infections (e.g., ESBL in <i>E. coli</i>)	Moderate (association, not proof)

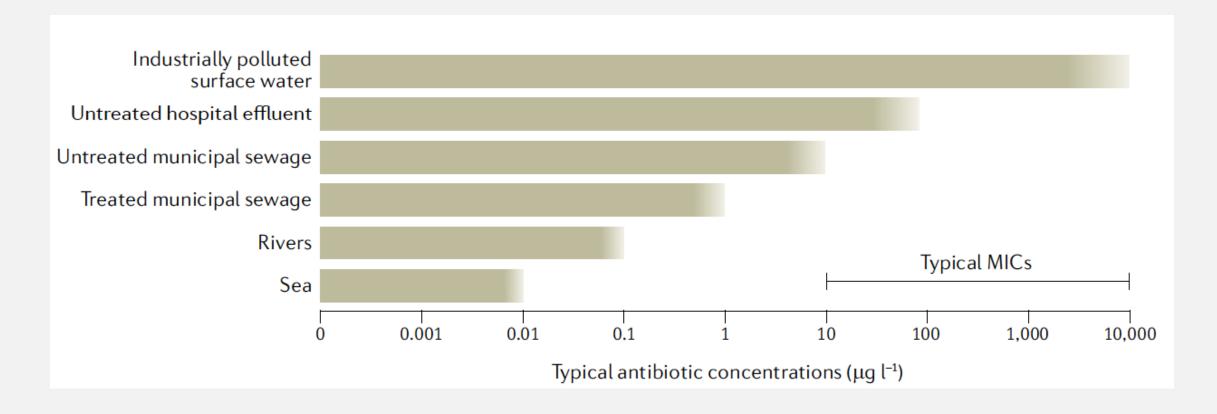
Animal sources of antimicrobial-resistant bacterial infections in humans

								D	tra	ansı	miss	ion [*]				,a.	-						
(nu	zard definition	Study type	Study	,	utcom	*	reservo	ntac pre	o do do do do do do do do do do do do do	Surrich	hion	, le	a ship	eslec	at o	seafult Dairye	205	get Hurne	in orth	Ental atimaly	mo so	st imp	oortan overall
Overall	Details		,	/0	ir by	III. V	JII. 600	400	7	ic. Si	8 0	attle	3,24	Servi	£181	Dail de	y of	ret Hirus	TUN, OFFI	JUZO	(>	∙50% i	in bolt
	Different bug-drug	RA (S-Q)	Collineau (2018)	НН					1	9	-	4								NA			
	combinations		Presi (2018)	НН					1	2	3	4								NA			
AMR general	Resistome	MS	Duarte (2021)	С																Human-	to-hu	man	
(6)		CEA (QI)	Lechner (2020)	Ε		В	N		2	1	3	5		4	l					Fresh pr	oduce	•	
		RA (QI)	Cheareau (2017)	НН																AMU, hu	uman-	to-hu	man
		RA (Q)	Opatowski (2021)	С		0				102		-11								NA			
		CEA (Q)	Evers (2017)	Ε					3	2	1	4	5							NA			
	ESBL & (p)AmpC producing	CEA (Q)	Carmo (2014)	Ε	-				1	2	3									NA			
Escherichia coli		MS	Mughini-Gras (2019)	С		N			2	5	4		7	6 3	3	1				Human-	to-hu	man	
(7)	ESBL producing	MS	Perestrelo (2020)	С					3	2	1					4				Unknow	'n		
(7)		Other	Booton (2021)	1		В														Human	AMU		
		Other	De Freitas Costa (2022)	С		0														Open co	mmu	nity	
	AMR as subtyping	MS	Mitchell (2021)	С																Drinking	wate	r	
	Typhimurium DT104	RA (Q/QI)	Alban (2002)	1						Т										NA			
	Heidelberg	RA (Q)	Collineau (2020)	-1					Т											NA			
Salmonella	(ceftiofur-resistant)	RA (Q)	Otto (2014)	1					Т											NA			
(non-typhoidal)	Desistant	RA (Q)	Costard (2020)	1							Т									NA			
	Resistant	OUT	Brown (2012)	1					2	3	1			2	3	3				Animal-l	based	food	
(8)	Invasive (AMR as subtyping)	MS	Parisi (2020)	1					1	3				2 2 1						Unobse	rved		
	Hadar (AMR as subtyping)	MS	Vieira (2016)	1					2	3	4			1						NA			
	ceftriaxone-resistant	OUT	Folster (2017)	1					1		1									Unknow	'n		
		OUT	Holmberg (1984)	-1																Food an	imals	& pro	ducts
Salmonella		OUT	Waltenburg (2021)	1		N														NA			
spp.(4)		RA (QI)	Doménech (2015)	НН					1	2	3									NA			
	AMR as subtyping	MS	Hald (2007)	1																Danish 8	& impo	orted	food
Campylobacter	jejuni clone SA	OUT	Sahin (2012)	1					2						1					Raw mil	k		
(2)	spp. (FQ-resistant)	RA(Q)	Vose (2000)	1					Т											NA			
NADCA (2)	ST398	RA (Q)	Cox Jr. & Popken (2014)	-1		0	0			T										NA			
MRSA (2)		RA (Q)	Schoen (2020)	1			N			Т										NA			

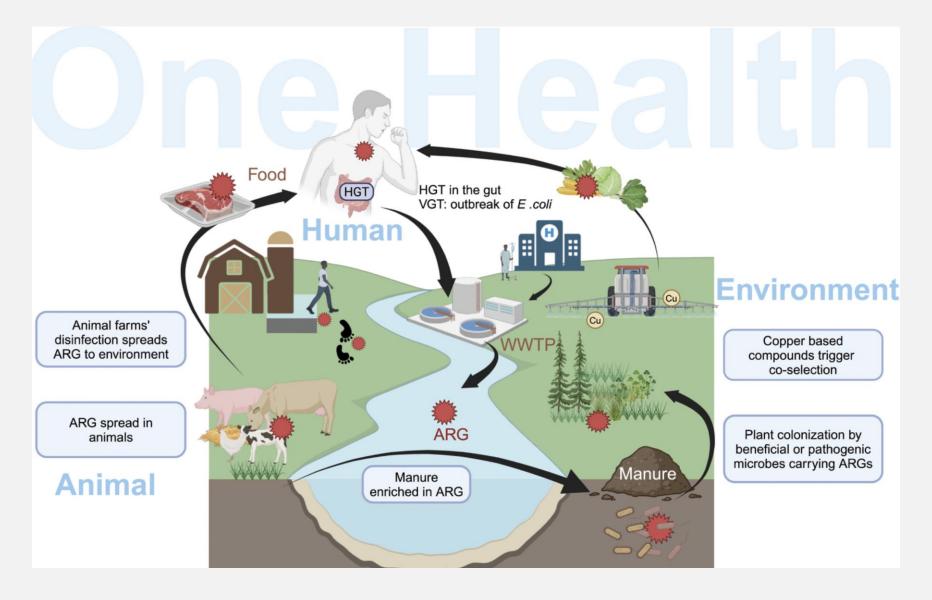
Animal-sources

Animal species¶

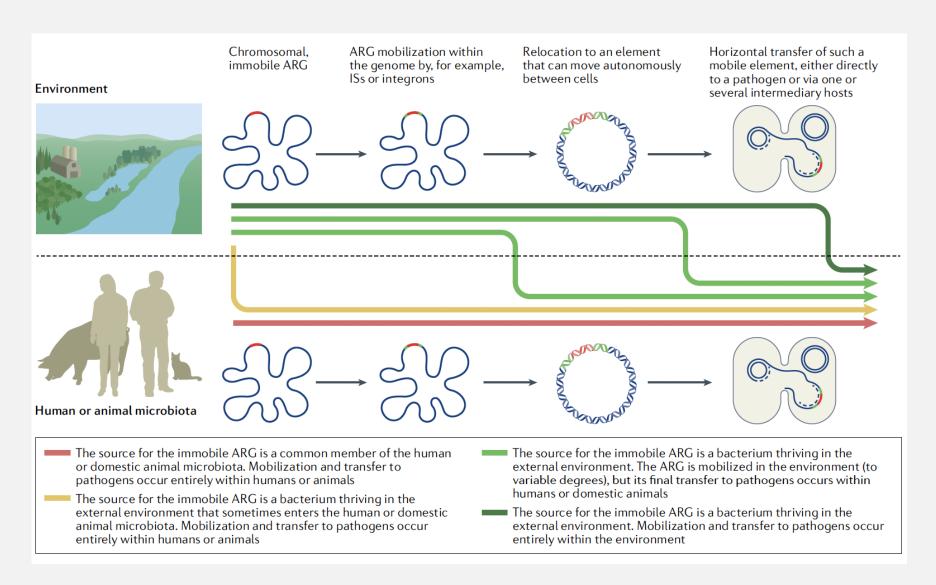
d Other


sources

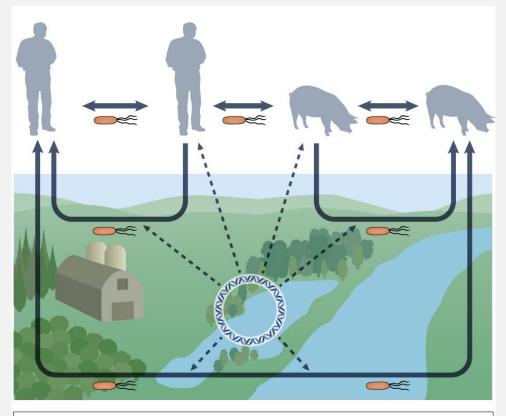
e All

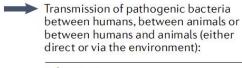

sources

Antibiotic concentrations in selected aquatic environments

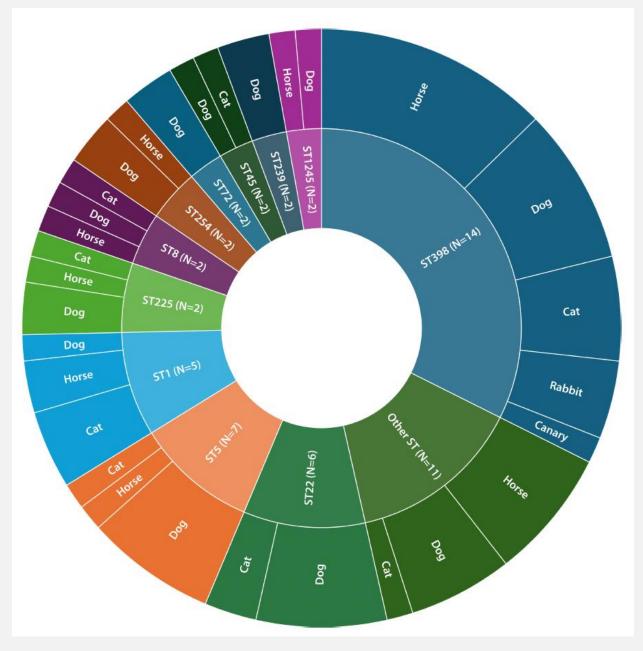


Bustamante M, et al. An eco-evolutionary perspective on antimicrobial resistance in the context of One Health. iScience. 2024




The role of the environment in the emergence of new resistance genes in pathogens

Pathways for transmission of bacterial pathogens and recruitment of resistance genes from the environmental microbiota.

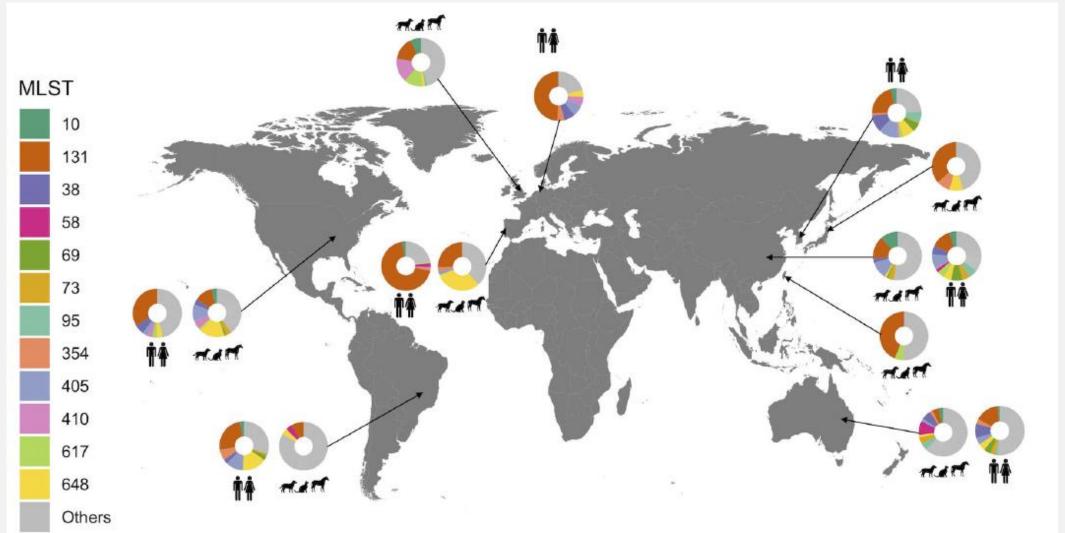


- Common
- Risks are in principle quantifiable and predictable
- Consequences of each transmission event are limited
- Transmission rates can be reduced

 Uptake of new resistance factors from the diverse environmental microbiota:

- Relatively rare
- More challenging to predict
- Consequences of single transfer events may be vast
- Irreversible

Distribution of the most commonly reported MRSA ST types among companion animals


Caddey B, et al.

Companions in antimicrobial resistance: examining transmission of common antimicrobial-resistant organisms between people and their dogs, cats, and horses.

Clin Microbiol Rev. 2025

Global distribution of ESBL producing extraintestinal pathogenic E.coli isolated from human and animals

Caddey B, et al. Companions in antimicrobial resistance: examining transmission of common antimicrobial-resistant organisms between people and their dogs, cats, and horses. Clin Microbiol Rev. 2025

Carbapenemase genes identified in companion animals

Gene	Country (no. of studies identified) ^a	Bacterial species (sequence type)	Animal species
IMP-45	China (1)	P. aeruginosa (308)	Dog
KPC-18	USA (1)	E. coli (372)	Dog
KPC-2	Brazil (2)	K. pneumoniae (11)	Dog
		E. coli (648)	
NDM-4	China (1)	E. coli (162, 224, 101, 448, 453, 1421, 167, 226, 410, 457, and 405)	Dog, cat, and turtle
NDM-5	South Korea (3)	E. coli (410, 101, 167, 354, 641, 1415, 2115, 3902, 10, 224, and 641)	Dog, cat, and
	China (2)	K. pneumoniae (378 and 307)	horse
	Thailand (1)		
	Italy (2)		
	UK (1)		
	Finland (1)		
	USA (3)		
OXA-48	France (3)	K. pneumoniae (11, 15, 37, 48, and 307)	Dog and cat
	Germany (1)	E. coli (10, 69, 104, 131, 167, 405, 648, 3058, 297, 681, 1196, and 1431)	
	China (1)		
	Switzerland (1)		
OXA-181	Switzerland (1)	E. coli (410)	Dog and cat
	Portugal (1)		
OXA-23	Thailand (1)	A. baumannii (2, 16, 23, 25, 149, 1093, 1575, 1581, 1, and 7)	Dog and cat
	Pakistan (1)		
	Germany (2)		
	ltaly (1)		
	France (2)		
OXA-58	Germany (1)	A. baumanii (1)	Dog and cat
VIM-2	South Korea (1)	P. aeruginosa (233, 871, 1047, 1203, and 1428)	Dog
	Brazil (1)		

^aReferences for studies: (123, 127, 203–234).

Caddey B, et al. Companions in antimicrobial resistance: examining transmission of common antimicrobial-resistant organisms between people and their dogs, cats, and horses. Clin Microbiol Rev. 2025

Fecal carriage prevalence of Carbapenemase producing organism in healthcare- and veterinary-associated settings in China

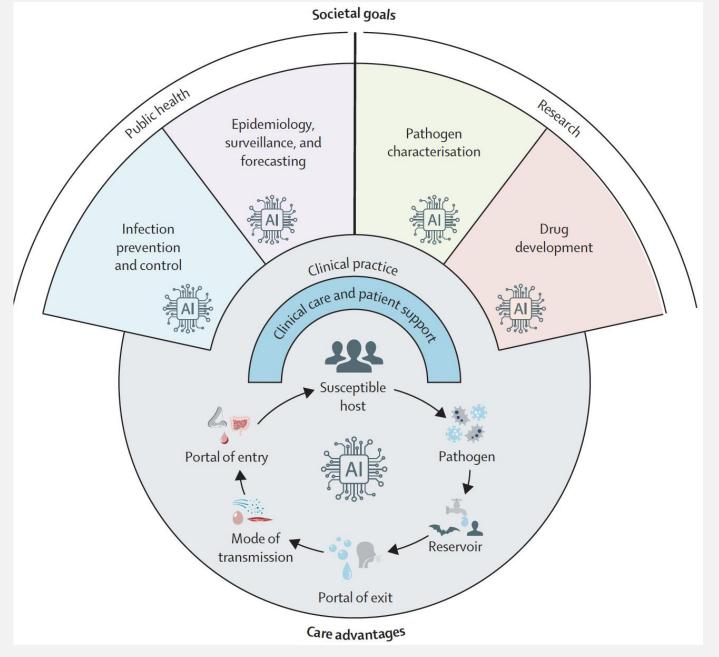
СРО	Genes	Population	Prevalence (%)
			(reference)
Enterobacteriaceae	NDM and KPC	ICU patient	16.7 (246)
Escherichia coli	NDM-1/5	General public	1.1 (247)
Enterobacteriaceae	NDM-5	Veterinary workers—small animal practice	7.4 (203)
Enterobacteriaceae	NDM-5	Dogs	17.8 (203)
Enterobacteriaceae	NDM-5	Cats	8.6 (203)
(CDC) combon on one construction			

^aCPO, carbapenemase-producing organism.

Caddey B, et al. Companions in antimicrobial resistance: examining transmission of common antimicrobial-resistant organisms between people and their dogs, cats, and horses. Clin Microbiol Rev. 2025

A Good Example from France

Since 2011, France has implemented three national Ecoantibio plans to reduce antibiotic use in veterinary medicine. These initiatives actively involved farmers, veterinarians, regulators, and researchers.


From 2011 to 2021, the overall antibiotic exposure in livestock decreased by 47%, with substantial reductions, exceeding 90% in some key antimicrobials, such as fluoroquinolones in poultry and colistin in pigs and calves. Of note, colistin, a drug that was once commonly used in livestock, saw a 66% reduction in exposure between 2014 and 2022, surpassing the initial targets.

These policy efforts have produced a measurable biological impact, with data from French national surveillance showing a steady decline in resistance levels over the past decade. The 2023 ANSES scientific report identified 11 priority bacteria—antibiotic combinations to monitor in animals, due to their implications for human health. For most of these, including meticillin-resistant *Staphylococcus aureus*, fluoroquinolone-resistant *Escherichia coli*, and colistin-resistant Enterobacterales, no strong molecular or epidemiological evidence links animal strains to multidrug-resistant infections in humans.

The most crucial, Enterobacterales resistant to carbapenems, remains virtually absent in French livestock and has only been detected sporadically in companion animals.

Khamisse, Elissa et al. Rethinking the role of animals in antimicrobial resistance. The Lancet Microbe 2025

Multilayered conceptual theoretical framework for potential applications AI in infectious disease prevention and management

Odone A, et al. Artificial intelligence and infectious diseases: an evidence-driven conceptual framework for research, public health, and clinical practice. Lancet ID 2025.

Conclusion

The body of evidence on the direct contribution of animal sources to AMR in humans is growing but still relatively small.

Existing studies utilise a broad range of methodologies to address this question.

Recent years have seen promising developments, such as using human resistome data for source attribution, that will aid in tailoring studies to the specific characteristics of the AMR hazard.

Surveillance with molecular methods is necessary

The policymakers should taken an action.

Thank you

ID & CM

Füsun Can Şiran Keske Mert Kuşkucu Lal Sude Gücer **Cansel Vatansever** Fatihan Pınarlık Jale Boral Nazlı Ataç Güz Ekinci Francis K. Cooper Anı Akpınar Pelin İrkören Bahar Madran

https://twitter.com/kuiscid

https://www.instagram.com/KUISCID

https://www.linkedin.com/company/ku-is-cid