Legionnaires’ Diseases – Public Health Perspective

Dr Tonny NG
SM&HO (Epidemiology Section)
Surveillance and Epidemiology Branch
Centre for Health Protection
June 1, 2011
About the origin

- The American Legion – the veterans service organization in the USA
About the first outbreak

• In 1976, the American Legion Convention in Philadelphia
 - 182 cases of pneumonia, 34 died

The Bellevue-Stratford Hotel - Broad Street in Philadelphia’s Center City since the early 1900s
About the first outbreak

• Retrospective study showed outbreaks:
 - in 1974 (in same hotel!),
 - in 1968 (in Pontiac, Michigan)
 - in 1965 (a hospital in Washington DC),
 - in 1957 (a meat-packing plant in Minnesota)
About the bacterium

- In January 1977, Dr. Joseph E. McDade, a microbiologist at the CDC, discovered the bacterium.

- The national commander wrote a letter to the CDC requesting that the disease be named **Legionnaires’ disease** and that the organism itself be named **McDade-Legionnaire**, recognizing the CDC microbiologist.
Sources of LDB

• Water is the major natural reservoir for LDB, which thrive in warm damp places and are commonly found in lakes, rivers, creeks, hot springs, etc.

• LDB proliferate in poorly maintained or designed artificial water system, such as cooling tower waters, hot and cold water systems in buildings, whirlpool spas (Jacuzzi), water fountains, humidifiers, respiratory therapy equipments, etc.
• Disease spread via aerosols and inhalation

• Infective dose is unknown, but can be assumed to be low for susceptible humans, as patients have been known to be infected
 • after exposure of only a few minutes to sources
 • at up to 3.2 km from the sources (Addiss et al., 1989)
 • recent evidence suggests that infection may be possible at even longer distances (Tran Minh et al., 2004)

• No evidence of human to human transmission of legionnaires disease and Pontiac fever (WHO, 2007)
• The LDB is important because of its ability to survive in high temperature environments (Amato-Gauci and Ammon 2007)
• Modern architecture has provided it with an evolutionary advantage as it can thrive in
 – cooling towers
 – evaporative condensers
 – Humidifiers
 – decorative fountains, and
 – hot water systems
• Outbreaks have been linked to large modern building complexes, such as tourist resorts
• Treatment with antibiotics is generally effective but case fatality rates are disproportionately high among elderly and immunocompromised individuals
• In March 1994, LD has been listed as a notifiable disease under the Quarantine and Prevention of Disease Ordinance (Cap. 141) (former ver. Of Prevention and Control of Disease Ordinance Cap. 599)

• LD was added into the list of notifiable occupational disease under the Occupational Safety & Health Ordinance (Cap. 509) in June 1999
Epidemiology of LD in HK
Number of reported LD cases (2001-2011)

No of Legionnaires' Disease cases 2001-2011 (as of 20 May 2011)

Year

No of cases

Percentage of using UAT for diagnosis of LD in 2004 33%
2005-2008 59%
2009 73%
Incidence of LD in HK and overseas countries
Sources of Legionnaires' Disease 94-10

- No. of Case(s)
- Year

- Local
- Unclassified
- Imported
• Risk factors
 – Age >40
 – Male
 – Smokers, alcohol abuse
 – Underlying disease: Diabetes mellitus, Chronic heart disease, chronic pulmonary disease, chronic renal disease, immunosuppression, haematological malignancy, iron overload
 – Recent Travel with overnight stay outside home
 – Exposures to whirlpool spa
 – Recent repairs or maintenance work on domestic plumbing
Age & Sex distribution of Legionnaires' Disease 1994-2010

89% of cases in >=50 years
91% affected male
Risk factors of LD cases 2000-2010

- Ever smoking: 60%
- DM: 40%
- Chest disease: 20%
- Chronic drinker: 10%
- CRF: 10%
- Malignancy: 5%
- Immunocompromised: 5%

% having risk factor
Fatal cases and case fatality ratio

Case fatality ratio 1994-2010: 10.5%
More cases (54%) occurred in summer months from May to Aug.
Environmental Factors for Infection

• HPA of UK press release, 17 September 2008

Climate change may lead to an increase in cases of Legionnaires’ disease

A recent study conducted by the Health Protection Agency, one of the first of its kind in Europe, has found that higher temperatures and increases in humidity are associated with an increase in cases of Legionnaires’ disease…..
Naturally occurring *L. pneumophila* survived and multiplied in water at temperatures between 25 °C and 45 °C, with an optimal temperature range of 32–42 °C. (Yee & Wadowsky (1982))

An optimum temperature can cause a rapid increase in numbers of the organism.

As transmission of the bacterium occurs by aerosol, humidity is an important factor in its survival.
Humidity and LD
Temperature and LD in HK
Decimal reduction times for *L. pneumophila* serogroup 1 at different temperatures

Decimal reduction time (D) = time in minutes to kill 90% of the population of *Legionella*

Source: data combined from Dennis, Green & Jones (1984); Schulze-Robbecke, Rodder & Exner (1987)
Relationship between Legionella proliferation & temp. of water systems

Water Temperature(°C)

- Chilled water in air-conditioning system
- Cooling tower condensate
- Cold water storage
- Air-handling unit
- Pool water
- Hot water storage
- Steam humidifier

Legend:
- Legionella
- Will remain dormant
- Will multiply
- Will die in time
- Will not survive
Risk factors for *Legionella* infection, by reservoir

<table>
<thead>
<tr>
<th>Risk factors (environmental)</th>
<th>Cooling water systems</th>
<th>Hot and cold-water systems</th>
<th>Hot tubs Natural spa pools Thermal springs</th>
<th>Humidifiers Respiratory equipment</th>
<th>Potting mixes Compost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commonly implicated Legionella species</td>
<td>Predominantly L. pneumophila sg 1</td>
<td>L. pneumophila sg 1, 2, 4, 6, 12, L. micdadei, L. bozemani, L. feelei and others</td>
<td>L. pneumophila sg 1, L. micdadei, L. gormanii, L. anisa</td>
<td>L. pneumophila sg 1, 3, and others</td>
<td>Exclusively L. longbeachae</td>
</tr>
</tbody>
</table>

sg = serogroup
Example of poorly maintained sap pool

<table>
<thead>
<tr>
<th>Location of water samples</th>
<th>Legionella culture</th>
<th>Total bacterial count (per ml)</th>
<th>Water Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor swimming pool in Club Siena</td>
<td>No Legionella species isolated</td>
<td>Nil</td>
<td>21°C</td>
</tr>
</tbody>
</table>
| Male whirlpool bath in the changing room of Club Siena | *Legionella pneumophila* serogroup 1 (c.f.u. per ml): 210
Legionella pneumophila serogroup 2-14 (c.f.u. per ml): 12 | >30,000 | 34.5°C |
Mechanism of Cooling Towers
Distance from the cooling tower as a risk factor for infection (Brown et al. (1990))

- Risk of illness 20% less for each 0.1 mile (160 m) increase in distance from the hospital (up to one mile away)

- Transmission mainly within 0.25 miles (400 m)

- Infection associated with frequent and extended exposure to the source

- Cumulative exposure as a risk factor for illness, as well as proximity to the source
• No established dose-response relationship for *Legionella* infections

• The likelihood depends on
 – load of bacteria
 – effectiveness of dissemination
 – the way in which it multiplies
 – and its ability to form aerosols
 – strain virulence

• Recovery of *L. pneumophila* by culture is poor. These uncertainties and differences in susceptibility of *Legionella* populations make it difficult to interpret the colony count values for *Legionella* in relation to disease risk

• *Legionella* Count, however, provide useful information about the degree of amplification of *Legionella* in a system

• A high degree of amplification results in a higher exposure, which may be related to a higher infection risk
• Water alone is insufficient to allow *L. pneumophila* to proliferate. *Legionellae* can grow in association with many different organisms.

• Presence of other microorganisms allow *Legionella* to amplify (Yee & Wadowsky, 1982).

• *Legionellae* grown in biofilms are more resistant than the same bacterial species in the water phase of the system (Barker et al., 1992; Cargill et al., 1992; Surman, Morton & Keevil, 1993; Santegoeds, Schramm & de Beer, 1998).

• It is important to control other microorganisms to reduce the proliferation of *legionellae*.
Action Plan for environmental samples with laboratory confirmed *Legionella* Bacteria in Hong Kong

<table>
<thead>
<tr>
<th>Site of Env. Samples collected</th>
<th>Action level (cfu/ml)</th>
<th>Other LD species</th>
<th>Actions *</th>
<th>Other Action parties</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Towers</td>
<td>HCC/TBC 100,000</td>
<td>10</td>
<td>Inform EMSD; Inform the owner and request proper online disinfection according to the advice from EMSD; Resample within 3 to 7 days after disinfection</td>
<td>EMSD SEB</td>
<td>CoP WACS, EMSD, 2006; SA</td>
</tr>
<tr>
<td>Spa pools/ Jacuzzi / Swimming Pool/ fountain</td>
<td>(TBC) 200</td>
<td>0.1</td>
<td>Inform FEHD if appropriate and EMSD; Inform the owner and request proper disinfection; advise to suspend the facility until further sampling demonstrates that the organism is no longer present.</td>
<td>FEHD, EMSD, ICB</td>
<td>Cap 132CA (FEHD); Austria, Switerland, US, UK</td>
</tr>
<tr>
<td>Domestic-use resp. equipments</td>
<td>(TBC) 0</td>
<td>0.1</td>
<td>Inform the owner and request to disinfect / discard / replace as appropriate; Seek advice from ICB if necessary; Inform EMSD if necessary</td>
<td>SEB ICB/EMS D if necessary</td>
<td></td>
</tr>
<tr>
<td>Site of Env. Samples collected</td>
<td>Action level (cfu/ml)</td>
<td>Actions *</td>
<td>Other Action parties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LD serogp 1</td>
<td>Other LD species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water sample from Hot and Cold water system (include tap, water tank, piped water system, instantaneous water heater, etc.)</td>
<td>0.1</td>
<td>0.1</td>
<td>Inform WSD if appropriate; Inform the owner / property management and request proper disinfection immediately according to the advice from WSD. Resample after maintenance</td>
<td>WSD</td>
<td></td>
</tr>
<tr>
<td>Water sample from tap with filter</td>
<td>0.1</td>
<td>0.1</td>
<td>Inform the owner and suggest to discard / replace the filter if tap water sample is negative</td>
<td>SEB</td>
<td></td>
</tr>
<tr>
<td>Water sample (storage-type water heater)</td>
<td>0.1</td>
<td>0.1</td>
<td>Inform the owner and EMSD; Seek advice from EMSD; If all other samples are negative (e.g. water tank and outlet swab), suggest replacing the heater or carry out disinfection according to EMSD’s advice. Resample after disinfection/maintenance.</td>
<td>EMSD SEB</td>
<td></td>
</tr>
<tr>
<td>Swab sample From Tap / Shower / piping</td>
<td>Positive</td>
<td>Positive</td>
<td>Inform the owner and suggest to discard / replace the tap/shower; re-sample after replacement if water sample was also positive</td>
<td>SEB</td>
<td></td>
</tr>
<tr>
<td>Sources</td>
<td>Legionella Count (cfu/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Legionnaires’ disease: The control of legionella bacteria in water systems. Approved CoP & guidance: (HSE, 2000) | (<100 LDB cfu/L = 0.1 cfu/mL) **System under control**
(=0.1 to 1 cfu/mL) **Review programme operation**
(a) A review of the control measures and risk assessment should be carried out to identify any remedial actions and the count should be confirmed by immediate resampling. | (>1 cfu/mL) **Implement corrective action**
(a) The system should immediately be re-sampled. It should then be ‘shot dosed’ with an appropriate biocide, as a precaution. The risk assessment and control measures should be reviewed to identify remedial actions. |
| **EU** | | |
| European Guidelines for Control & Prevention of Travel Associated Legionnaires’ Disease (EWGLI, 2005) | (<1000 LDB cfu/L = 1 cfu/mL) **System under control**
(=1 to 10 cfu/mL) **Review programme operation**
(a) The count should be confirmed by immediate resampling. If a similar count is found again, a review of the control measures and risk assessment should be carried out to identify any remedial actions | (>10 cfu/mL) **Implement corrective action**
(a) The system should immediately be re-sampled. It should then be ‘shot dosed’ with an appropriate biocide, as a precaution. The risk assessment and control measures should be reviewed to identify remedial actions |
<table>
<thead>
<tr>
<th>Sources</th>
<th>Legionella Count (cfu/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><10</td>
</tr>
<tr>
<td>SA</td>
<td>Guidelines for the Control of legionella in Manufactured Water Systems in South Australia (South Australian Health Minister, 2008) www.dh.sa.gov.au/pehs/PDF-files/legionella-guidelines-2008.pdf</td>
</tr>
<tr>
<td>Sources</td>
<td>Action Levels for Legionella in Cooling Towers</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>Legionnaires’ Disease eTool: Water Sampling Guidelines (assessed Mar 2010) www.osha.gov/dts/osta/otm/legionnaires/sampling.html</td>
</tr>
<tr>
<td>EMSD</td>
<td>CoP for Water-cooled Air Conditioning Systems Part 2: Operation and Maintenance of Cooling Towers (EMSD, 2006) www.emsd.gov.hk/emsd/e_download/pee/wacscodep2_eng_2007A.pdf</td>
</tr>
</tbody>
</table>
Action Levels for *Legionella* in Hot & Cold Water Systems

<table>
<thead>
<tr>
<th>Sources</th>
<th>Legionella Bacteria (cfu/ml)</th>
<th>UK (HSE, 2000)</th>
<th>SA (warm water systems only) (South Australian Health Minister, 2008)</th>
<th>EU (EWGLI, 2005)</th>
<th>The Netherlands (WHO, 2007)</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>0.1 to <1</td>
<td>>1</td>
<td>(UK1) Action depends on whether just one or two or the majority of samples are positive; review of control measures and risk assessment required; possible disinfection.</td>
<td>(a) Same as (UK1)</td>
<td>Immediate action is needed to prevent closure of (part of) system involved.</td>
<td>Prompt cleaning and/or biocide treatment of the system</td>
</tr>
</tbody>
</table>
Guidelines in legislation and/or guidance for hot tub water quality (Whirlpool / Jacuzzi / Hot spring)

<table>
<thead>
<tr>
<th>Country</th>
<th>Spa whirlpool / hot tub legislation / guidance</th>
<th>Legionella limit in hot tubs (CFU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czech Republic</td>
<td>Decree, Ministry of Health No. 135/2004</td>
<td><1000/l (=1/mL)</td>
</tr>
<tr>
<td>Austria</td>
<td>Decree, Ministry of Health BGBI II 1998/420 Baderhygieneverordung</td>
<td>0/100 ml (=0/mL)</td>
</tr>
<tr>
<td>Spain</td>
<td>Spanish legislation and Basque guidance for Legionella control Basque guidance for spa control</td>
<td>100–1000/l (=0.1-1/mL)</td>
</tr>
<tr>
<td>Switzerland</td>
<td>SIA Norm 385/1 Edition 2000 (guidance)</td>
<td>0/ml</td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Germany</td>
<td>DIN 19643</td>
<td>1000/l (=1/mL)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>HSE / HPA Guidance (HPA 2006)</td>
<td><100ml (=0.1/mL)</td>
</tr>
</tbody>
</table>

[CFU = colony forming units; HPA = Health Protection Agency; HSE = Health and Safety Executive.]

Note: Data refer to situations where water temperature is >30 ºC and where aerosols could be produced.

(Source: WHO, 2007)
Investigation of a Sporadic case

Aims of Ix

• Source identification (risk-based approach)
• Apply control measure to prevent further spread
• Risk communication
Field Investigation

• Home visit
 – Potential sources are poorly maintained water system with generation of water droplet / aerosol as well as re-circulated / stagnant water
 – Common items: humidifiers, cool fans, shower facilities, respiratory therapy equipments
 – Storage vs Instantaneous type water heater
 – Filter unit
Field Investigation

- Inspection route formulated according to local movement
- Water Cooling Towers
- Water Fountains
- Spa / Jacuzzi
Possible Control Measures

- Suspension of contaminated facilities
- Source elimination (e.g. replace shower head and host, remove high risk device)
- Disinfection+ Follow-up sampling
- Maintenance plan
- Notify country of importation for public health action
Limitations in source identification

- LDB are ubiquitous in natural and artificial water environments worldwide

- Genetic sequencing of bacteria from suspected source and patient is required to establish causal relationship

- Majority of cases were diagnosed by serology/urine test. Bacteria isolate not available for high proportion of cases

- Sampling error does occur during Env. Ix.

- Other L. species may mask water contamination by L. pneumophila
<table>
<thead>
<tr>
<th>Year</th>
<th>No of cases with positive water samples/Total no. of confirmed cases</th>
<th>Percentage of cases with positive specimen</th>
<th>No. of positive water sample/Total no. of water samples taken</th>
<th>Percentage of positive sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0/3</td>
<td>0%</td>
<td>0/20</td>
<td>0%</td>
</tr>
<tr>
<td>2005</td>
<td>3/11</td>
<td>27.3%</td>
<td>14/94</td>
<td>14.9%</td>
</tr>
<tr>
<td>2006</td>
<td>2/16</td>
<td>12.5%</td>
<td>3/80</td>
<td>3.75%</td>
</tr>
<tr>
<td>2007</td>
<td>2/11</td>
<td>18.2%</td>
<td>4/100</td>
<td>4%</td>
</tr>
<tr>
<td>2008</td>
<td>5/13</td>
<td>38.5%</td>
<td>11/108</td>
<td>10.2%</td>
</tr>
<tr>
<td>2009</td>
<td>12/37</td>
<td>32.4%</td>
<td>17/215</td>
<td>7.9%</td>
</tr>
<tr>
<td>2010</td>
<td>4/20</td>
<td>20.0%</td>
<td>10/104</td>
<td>9.6%</td>
</tr>
</tbody>
</table>
Way forward

• No specific legislation to control and regulate fresh water cooling towers or high risk device

Regulatory Control Measures in respect of Operation and Maintenance of high risk devices

VS

Surveillance and inspection program + public education
Major references

• PLDC, CoP of prevention of LD, 2007

• LEGIONELLA and the prevention of legionellosis, WHO, 2007

• Legionnaires’ disease, The control of legionella bacteria in water systems, Approved Code of Practice and guidance, Health and Safety Executive, UK, Third edition, 2000
Thank you